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We report the scaling relations between the exponents of the power-law decays of kinetic and elastic
energies, pressure, as well as torque fluctuations in elastic turbulence (ET). The relations are derived by
estimating that the divergent part of the elastic stress is much larger than its vortical part, and its
contribution into the full elastic stress is dominant in the range of the power spectrum amplitudes observed
experimentally in ET. The estimate is in line with polymer stretching by flow: the polymers are stretched
mostly by the divergent part associated with a strain rate, whereas a rotational, or vortical, flow plays a
minor role in the polymer stretching. The scaling relations agree well with the exponent values obtained
experimentally and numerically in the ET regime of a viscoelastic fluid in different flow geometries.
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Elastic turbulence (ET) is a chaotic flow at low Reynolds
number, Re <« 1, and large Weissenberg number, Wi =
AV/1> 1, discovered two decades ago and currently well
studied and characterized experimentally, theoretically, and
numerically in various flow configurations with curvilinear
streamlines. Here 4 is the longest polymer relaxation time,
V is the average flow velocity, and [ is the characteristic
length scale. ET displays large velocity fluctuations in a
wide range of spatial and temporal scales, a significant
growth of flow resistance, and many orders of magnitude
enhancement of mixing efficiency [1-3]. Elastic instabil-
ities and ET at Re <« 1 are driven solely by elastic stresses
generated by polymer stretching caused by the flow. The
key observation in ET is the power-law decay of the kinetic
energy spectra in a frequency domain E(f) = {|a(f)|*) ~
f~% with the exponent o > 3 (between 3.3 and 3.6 depend-
ing on flow geometry) [1-4]. Since the validity of the
Taylor hypothesis is justified with some limitations also in
ET [5], one expects the same exponent value in both the f
and k domains, that has been indeed confirmed via particle
image velocimetry (PIV) in a swirling flow between
rotating and stationary disks where a ~ 3.5 in the k domain
is measured [6].

Further on, additional key features of ET in a swirling
flow are identified such as the power-law decays of
the power spectra of torque I', Err = (|[['(f)[?), and the
pressure p, E,, = (|p(f)|*). Both power spectra are
characterized by a flat region at f/f,,, < | and the steep
power-law decay at f/f,o > 1 scaled as Erp ~ (f/fyor) ™"
[7.8] and E,, ~ (f/fvor)™” [7.8] at polymer concentra-
tion ¢ = 100 ppm and various Wi and for various ¢ <
900 ppm at the maximum Wi values with the exponents
u~4 and f ~ 3, respectively. Here f,, is the main vortex
frequency with a distinctive peak at f/f,,, = 1 in the
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spectra [3,7,8]. One should emphasize a surprising repeat-
ability and reliability of the value of  ~ 3 obtained in ET
in different flow geometries: a swirling flow between two
disks, a wake between two widely separated obstacles
hindering a channel flow, and a flow past a cylinder [4,
7-10]. Moreover, in the swirling flow at ¢» = 300 ppm and
Wi = 100 with more than 10° data points taken in the
separate experiment, one gets a very reliable result of f =
3 £0.1 [see [8] Fig. 14(b)]. It is distinctly different from
experimental values of « varied in the range 3.3-3.6
depending on flow geometry and in the range 3.2-3.8 in
the numerical simulations.

One can show that in ET of a swirling flow, the torque
is directly related to the averaged elastic stress, (o;;), on
the driving disk. In general, I'(z) = [R(z,(r,1))27rdr,
where (z,,(r, 1)) is the average stress on the driving disk.
At Re<«1 and Wi below an elastic instability onset,
(z,(r, 1)) =1, = (0yisc)» Where (o) is the averaged
viscous shear stress on the disk that is independent of
(r,t) and related to the torque as I' = (27R?/3)z,,. In the
ET regime at Re < 1 and Wi> 1, (z,(r.1)) = (0;) +
(0yisc)- Moreover, in ET 6,5 < 6;; and s0 (0yisc) < (0,7)
[11,12]. Then one gets (z,,(r, 1)) = (0;;(r.t)). Thus in the
approximation of the independence of (s;;(7)) on r, one
obtains T'(f) ~ (o;;()) that leads to Erp = (|['(f)]?) ~
(18()P) ~f™.

To explain the power-law behavior and the scaling
exponents of the main flow parameters in ET, theory
[13] and numerical simulations [14,15] are carried out
for an isotropic, homogeneous, and unbounded flow of a
dilute polymer solution described by the Oldroyd-B model
with linear polymer elasticity [16] and with a back reaction
of the stretched polymers on the flow. Further on, the
numerical simulations in a wall-bounded channel flow with
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a linear periodic array of obstacles [17], and in two-
dimensional Taylor-Couette flow geometry [18] of a dilute
polymer solution characterized by the same Oldroyd-B
model at low Re are employed to test the power-law decay
exponent of the velocity power spectrum in ET. In all these
simulations similar results of @ > 3 with variations between
about 3.2 and 3.8 are found in accord with the experiment
and theory. Another 2D direct numerical simulation (DNS)
of forced fluid film flow of a polymer solution described
by a finite extension nonlinear elasticity-Peterlin (FENE-P)
polymer model [16] at Re <« 1 and Wi>> 1 reveals a chaotic
flow characterized by the decay of the kinetic energy
spectrum in a k domain with @~ 3.2 [19], in a good
agreement with the experiment [1,2], theory [13], and
other numerical simulations [14,15,17,18] in ET. One of
the key conclusions of DNS is the independence of the
exponent value of the power-law decay of the kinetic
energy spectrum on the polymer model.

The theory of ET is based on the Navier-Stokes equation
(NSE) for a polymer solution with a coupling term,
engendered by the back reaction of the elastic stress field
o;; on the velocity field V;, and the constitutive equation
for ¢;; in the Oldroyd-B model approximation [16]. In ET
at Re <« 1, an inertial term in NSE can be neglected. For
sufficiently stretched polymers, one gets o;; > a?j, where
?j is the elastic stress due to thermal noise, and two
equations describing polymer hydrodynamics in the case of
the Oldroyd-B model with the incompressibility condition
are [16]

o

V.p =nAV;+F,, (1)

Fi = v]O'lJ, (2)

viVi = 0’ (3)

dic;j = oy ViVi+ 0y ViV, =20/, (4)

where 7 is the dynamic viscosity. It was proved in [13] that
in a statistically steady state realized at times much longer
than the Lagrangian velocity gradient correlation time the
polymer stress tensor o;; is relaxed to the uniaxial form
o = B;Bj, if 6;; > a?j, S0 R; > R, is considered, where
R; is the end-to-end vector for a given configuration of a
polymer i, and R, is a radius of polymer random coil at
equilibrium (gyration radius [16]). Then o;; ~ (R;R;) ~
R;R;, as shown in [13]. The uniaxial form of o;; allows
us to rewrite the set of equations for polymer hydro-
dynamics in the form similar to magneto-hydrodynamic
(MHD) equations [20] with ¢;; = B;B; at zero magnetic
resistivity [13], from which only the Stokes equation is
presented below

Vip =nAV;+V,(B;B;), (5)

ViV,» - 0, (6)

ViB,- — 0, (7)

where B; has the solenoidal nature, characterizes the degree
of the coherent polymer extension, and, in a contrast to the
magnetic field vector in MHD, is defined up to a sign,
analogously to the director in nematic liquid crystals [13].
Another important difference with MHD appears in the
relaxation term instead of the magnetic resistivity [20]. At
the sufficiently large back reaction of the elastic stress
determined by the term (B,V;)B;, the flow reaches a
chaotic, statistically steady state defined as ET.

The major result of the theory based on Eqgs. (1)—(4) is
the prediction of the power-law decay of the spherically
normalized kinetic energy spectrum E(k) ~ V2pl(kl)=@
with a > 3 and the related to it the elastic energy spectrum
Ep(k) ~ B*I(kl)™, where v = (a —2) > 1 that is close to
the passive scalar Batchelor decay exponent —1 [21]. Here
k is the wave number, and / is the length scale that defines
the largest average velocity gradient. The exponents of
both power spectrum decays are obtained by applying a
passive scalar approach for a description of the small scale

perturbations of the velocity u and elastic stress b fields
passively advected by the large scale random velocity
Vi fleld, where u;, bi < Vi’Bi and VIMJ < V,-VJ, while
Vib; ~V;B; [13]. From both of the power spectrum
expressions, one finds that the main energy in ET is
carried out by the stretched polymers resulted in the
elastic energy ~B2. The latter follows from the relation
E(k) ~Re(kl)™2Eg(k), where p(V/B)*> ~Re < 1, since
B> ~n/A and pV?~p(l/A)? that leads to p(V/B)>~
pl?/n = ElI7" ~Re [13], where p is the fluid density
and the elasticity El = Wi/Re = pl?/Jv>> 1, since in
the experiment in the ET regime Wi>> 1 and Re « 1.
The theoretical value of « is found in good accord with the
experimental results [1-4,6].

The same relation in ET between v and a can also be
obtained just by scaling arguments considering o;; =
B;B; ~ R;R; leading to B; ~ R;. A statistically steady state
of a polymer extension is determined by the interplay
between a stretching due the velocity difference between
the polymer ends, estimated by the velocity gradient
multiplied on R;, and its relaxation. To simplify the issue,
we consider a plane Couette flow with a uniform shear rate
where a polymer is introduced. The polymer is stretched in
the shear direction up to R and remains unchanged in
the perpendicular one R, = R over the relaxation time A

that leads to a relation R = ROVV/I (see [22]). Thus taking
into account that R, ~ VV, one finally obtains Ej (f) ~
<V\7V\7>f ~ f~@2) since E(f) = (V \7>f ~ f~%, resulting
in the equation v = a—2, equivalent to the relation
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obtained by analytical calculations in [13] and dis-
cussed above.

Though the theory of ET predicts the first relation
between the scaling exponents of the elastic and kinetic
energy spectrum decays v = a — 2 [13], it does not provide
any clue on the relation between the scaling exponents of
the kinetic energy spectrum and pressure power spectrum
decays a and f, respectively.

Using the Stokes equation [see Eq. (5)], we derive in ET
the relation between the Fourier transforms of the pressure
E, (k) ~ k%, velocity E, (k) ~ k=*/2, and the elastic stress
Eg(k) ~ k™, where v = a — 2 is used,

iB2 (k1) (k1) =" = ip (kL) (k) P/ +n (k1) VI~ (ki)~(@2/2,
(8)

The Eq. (8) presents the elastic stress power spectrum as
a sum of two terms. By straightforward calculations we
demonstrate that the first term on the right side of Eq. (8)
is the power spectrum of the divergent part of the elastic
stress ofi' = (B;B;)™. Indeed, by taking a divergence
operation on the both sides of Eq. (5), one gets Ap =
9?(B;B;)" /0x;0x; [7,8], which Fourier transform leads
to the relation E(kl)*" ~ E ,(kl) ~ p(kI)=/* after cancel-
ing (kl)? in both terms. Then one finds that E (k)% ~
p(kl)™P/? is equivalent to the first term on the right side of
the Eq. (8) after canceling factor k/ in all three terms.
Similarly, by taking a curl operation of the same Eq. (5)
provides the exact relation between the vortical (divergent-

free) part of the elastic stress o‘l?]‘.’” = (B;B j)c‘"' and the

vorticity O =V x V: V x V(B B)®! = —yAQ [8]. Then
the Fourier transform results in the relation Eg(kl)®! ~
nVI='(kl)~(@=2)/2 that is equivalent to the second term on
the right side of Eq. (8) after canceling the factor k/. Thus,
the Eq. (8) can be rewritten as Ep(kl) = Eg(kl) +
Eg(kl)*, and after substituting the expressions for
Eg(kl)* and Eg(kl)*" and performing straightforward
algebraic transformations one gets the following algebraic
equation

B2 = pxbl@=2) _i(qV/D)x, 9)

where x = (kI)~®2/2 In ETat kI < 1 or fA < 1 (and so
x > 1) just before the power-law decay onset, the elastic
energy spectrum is flat and the amplitude ratio of the
Fourier transforms Eg(kl)% /Eg(kl)*" is large due to both
x > 1 and the large ratio of the coefficients of two terms
on the right side of Eq. (9), namely pl/Vn > 1. Regarding
the second inequality, by neglecting the last term due it
smallness one gets the equality p = B> Then by using
B%l/Vn, one can rewrite it as (B?/pV?)(plV/n) =
El(plV/n) = El- Re = Wi > 1. Then the ratio E(kl)%"/
Eg(kl)®" > 1 at kI < 1 and even at k[ > 1 up to at least

kl~ 10 in spite of a decay of Eg(kl)¥" steeper than of
Eg(kl)®™ at kI > 1 (or fA > 1). Thus, the last term on the
right side of Eq. (9) can be neglected in the whole range of
the power-law decay of the energy spectrum obtained in the
experiment. As the result, one gets a new scaling relation:

p=2(a-2). (10)
Thus, the conclusion is that 6%V plays the dominant
role in the elastic stress field, whereas a,c-]‘-lﬂ has the minor
contribution into polymer stretching, and so the vortical
part of the elastic stress in ET can be neglected in the range
of the velocity and pressure power spectra found exper-
imentally [1-4,6—10]. Moreover, this conclusion is in
line with the physics of the polymer stretching in ET:
polymers are considerably stretched by the flow strain rate
reflected by the divergent part of the elastic stress, whereas
in rotational (vortical) flow polymers remain almost
unstretched. This conclusion is recently confirmed and
clarified both theoretically and numerically by considering
a novel effect of preferential sampling of elastic chains in
turbulent flows. It is demonstrated numerically that, first,
the stretched chains are located in the flow regions with low
vorticity, and, second, the elastic chains are trapped in the
vortical regions, where they are found in a coil state with
the negligible contribution into the elastic energy [23].

Using the new scaling relation [Eq. (10)] and the
experimental value of a= 3.5, one gets for the power-
law decay exponent of the pressure power spectrum f = 3
in good agreement with the experiment [4,7-10], and for
the algebraic decay exponent of the elastic stress power
spectrum v = 1.5, which is still not verified in ET either
experimentally or numerically. On the other hand, from the
above suggested relation between the torque and averaged
over the upper driving disk elastic stress power spectra
Err = ([T(f)]?) ~ (|6(f)[?) ~ f* one gets the relation
u =2v. In this case, taking the obtained above value
v~ 1.5, one finds u ~ 3 instead of the experimental value
u ~4[7,8], where the discrepancy could be attributed to the
assumptions, first that (c;;(r, t)) is independent of r to get
the relation I'(r) ~ (6;(¢)) and second that the scaling
exponent for o;; and (o;;) is the same used in the derivation
of y =2uv.

Another well-known example of a chaotic, spatially
smooth and random in time flow is a high-Re inertial
turbulence in a deep-dissipation scale range, in Newtonian
fluid turbulence. In this case at scales k~! < ¢, the kinetic
energy spectrum decays exponentially, and the velocity
field is characterized by the single spatial scale ¢ [24].
There is significant evidence coming from 3D DNS of
homogeneous and isotropic viscoelastic turbulence in a
turbulent drag reduction (TDR) regime that the fluid
elasticity qualitatively modifies the velocity power spec-
trum at scales k~! < ¢ due to a strong increase of a kinetic
energy content caused by polymer stretching [22,25-30].
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It has been demonstrated by 3D DNS of a simplified
viscoelastic fluid model that in the inertial range, at large
scales, a turbulent energy cascade leading to the kinetic
energy power spectrum remains roughly unchanged by the
presence of polymers, whereas at small scales, below ¢, the
velocity power spectrum decay is modified from exponen-
tial for Newtonian fluid to algebraic for viscoelastic fluid,
though the flow remains chaotic in time and spatially
smooth [22,25-30].

The first quantitative results on the power-law decay
k= of the kinetic energy power spectrum with a
detailed analysis of the dependence of & on Wi and Re
are obtained by numerical calculations using a hybrid
Eulerian-Lagrangian approach to 3D homogeneous, iso-
tropic, decaying turbulence in a polymer solution charac-
terized by the FENE-P constitutive equation and at rather
low initial Re (or at the turbulent Reynolds number
Re; (r+ = 0) = 52 based on the Taylor microscale) to attain
larger ¢ value [see Figs. 5, 6 [27], Fig. 30(a) [28], and
Figs. 5, 6 in [29]]. At the reduced time 7+ = 20 with
Re, (1« = 20) = 3.5, 3.2, 3.1, 3.0, and at four values of
Wi = 25, 50, 100, 200, it is found that « decreases from 4.6
down to 4.1 in the deep-dissipation range of scales, as
Wi increases from 25 up to 200 [27,29]. However, the
power spectrum amplitudes increase with Wi and signifi-
cantly exceed that of Newtonian fluid [28]. Moreover, the
same calculations reveal the pressure and elastic energy
power spectrum decays with the exponents =3 0.2
and v =2.2+0.1, respectively [29]. The authors of
Ref. [29] have also undertaken an attempt to derive a
scaling relation between a and S, though the suggested
relation, which is different from that discussed above in this
Letter, is not consistent with their numerical results.

Later on, a role of polymers in altering small scale
dynamics of homogeneous, isotropic turbulence at Re > 1
is investigated by 3D DNS, and a short review of former
relevant numerical results and a possible connection to ET
are provided in Ref. [22]. The early results [25,26,30,31] on
the small scale dynamics in TDR at Re > 1 in the presence
of polymers are presented in a qualitative way only. So the
early studies are conducted via 3D DNS in homogeneous,
isotropic, stationary turbulence at moderate Re; ~ 87 using
the linear polymer Oldroyd-B model. They reveal that the
kinetic energy spectrum is partially suppressed by energy
transfer to polymers at k=! < ¢, contrary to a significant
increase found in other studies [26,30,32], and the kinetic
energy spectrum demonstrates an algebraic decay with a ~
3.5 instead of an exponential decay for Newtonian fluid
[25]. The value of a is close to that found in other studies
[25,26,30]. Another 3D DNS calculations carried out at low
elasticity and moderate Re in homogeneous, isotropic,
decaying turbulence using the FENE-P polymer model
report a significant decrease of the dissipation energy rate
and an amplification of the kinetic energy and enstrophy
spectrum amplitudes in the deep-dissipation range together

with a slight simultaneous decrease of the kinetic energy
spectrum in the inertial range [30]. Moreover, the kinetic
energy spectrum shows power-law decay with a~ 3.5 at
k=' < ¢, close to that mentioned above [25]. Further pro-
gress in the DNS studies, where the scale-by-scale equation
of the interaction between polymers and fluid flow is
exploited, is presented in [31] and then later used in [33],
where the scale-by-scale kinetic energy flux is analyzed.
The latter reveals that the polymers remove energy from
large scales and then transfer to the small scales where it
dissipates. The energy balance between scales is further
studied in [22], where the power-law decay exponent
v~?2 of the elastic energy spectrum is clearly verified.
The latter agrees well with the finding in [29,31] and is
independent of the polymer model used. Recently the first
experiment in a large facility of grid turbulence in dilute
polymer solutions at Re = 2 x 10* reveals the exponent
a ~ 3 of the power-law decay of the velocity spectrum at
scales close but still larger than { [34]. It is the first
verification of various numerical results in the TDR regime
at the small scales.

To summarize the results of the DNS investigations of
homogeneous, isotropic turbulence at scales k~! < ¢, one
concludes that the values of the scaling exponents a, 3, and
v are rather close to those found in ET and independent of
the polymer model. However, a larger scatter in values for
is found: between a =~ 3.5 in DNS with various constitutive
equations [25,26,30] in a good agreement with ET versus a
hybrid Eulerian-Lagrangian DNS « between 4.1 and 4.6
depending on Wi [27-29]. Such scatter in values of « leads
to the discrepancy between values of f and v obtained in
DNS compared with those found from the scaling relations.

To conclude, the relations between the scaling exponents

a, v, p, p of \7 E, p, and I, are suggested and summarized
in Table I. The relation between a and f is well satisfied by
the exponent values taken from either experiments or DNS
in ET in various flow geometries, whereas the agreement
between a, v, and §f from DNS and the values obtained from
the two scaling relations applied to high-Re viscoelastic
turbulence at scales k=' < ¢ is less satisfactory. This dis-
crepancy between ET and high-Re viscoelastic turbulence
may be caused by a different nature of the elastic stress
field, namely the energy flux from the inertial to dissipation
scales in latter versus its absence in ET. It can lead, for
example, to a larger contribution of the vortical part of the
elastic stress field Eg(kl)*" in Eq. (9) than in ET, where
Eg(kl)*™ is neglected in the derivation of the scaling
relation in Eq. (10).

TABLE I. Table of the scaling exponent relations.
p v JZ
2(a=2) a=2 2(a=2)
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