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The momentum of light beams can possess azimuthal densities, circulating around the beam axis and
inducing intriguing mechanical effects in local light-matter interaction. Belinfante’s spin momentum loops
in circularly polarized beams, while the canonical momentum spirals in helically phased beams. However, a
similar behavior of their imaginary counterpart, the so-called imaginary Poynting momentum (IPM), has
not yet emerged. The foremost purpose of the present work is to put forward the discovery of this IPM
vortex. We show that a simple superposition of radially and azimuthally polarized beams can form an IPM
of completely azimuthal density. Additionally, the azimuthal IPM density can exist with a donut beam-
intensity distribution and even with a vanishing azimuthal component of all other momenta. This uncovers
the existence of a new mechanical effect which broadens the area of optical micromanipulation by
achieving optical rotation of isotropic spheres, in the absence of both spin and orbital angular momenta.
Our findings enrich the local dynamic properties of electromagnetic fields, highlighting the rotational
action of their IPM, and thus its mechanical effect on microparticles and nanoparticles.
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The linear momentum carried by a beam of light always
aligns along its mean direction of propagation [1].
Nonetheless, local momentum densities can arise in trans-
verse directions and manifest themselves via light-matter
interaction [1–6]. When the beam yields azimuthal compo-
nents to the momentum densities at every azimuthal posi-
tion, it can set small objects into continuous rotation about its
axis via an azimuthal optical force, which offers a distinct
degree of freedom to optical micromanipulation [7–15].
Conventionally, the momentum density P of a mono-

chromatic electromagnetic field is expressed in terms of the
time-averaged Poynting vector: P ¼ ReðE� ×HÞ=ð2c2Þ
[16]. It can be further decomposed into a canonical or
orbital momentum (CM) PO derived from phase gradient,
and a Belinfante’s spin momentum (BSM) PS concerning
the spin inhomogeneity [14,15,17–21], i.e.,

P ¼ 1

4ωn2
Im½εE� · ð∇ÞEþ μH� · ð∇ÞH�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PO

þ 1

8ωn2
∇ × ImðεE� ×Eþ μH� ×HÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PS

; ð1Þ

with permittivity ε, permeability μ, and refractive index n of
the embedding medium. We know that the azimuthal CM
and BSM densities provide the physical origin of the
(intrinsic) orbital and spin angular momenta for a paraxial
beam, respectively, and hence they can naturally appear in
helically phased [1,7–9,22,23] [cf. Fig. 1(a)] and circularly

polarized beams [Fig. 1(b)] [13–15,18] carrying their
corresponding angular momentum. In this context, it seems
that the azimuthal optical force must rely on the CM or the
BSM, and, hence, an orbital rotation of objects in the
absence of both spin [9] and orbital [13–15] angular
momentum is counterintuitive.
However, optical force theory explicitly shows that the

imaginary part of the complex Poynting vector ImðE� ×
HÞ is also relevant in the local light-matter momentum
exchange [24]. In this regard, the concept of imagi-
nary Poynting momentum (IPM) density, ImðΠÞ ¼
ImðE� ×HÞ=ð2c2Þ, was recently introduced [2–5].
While the quantum-mechanical picture of the IPM has
not yet been well established, numerical [2,3] and exper-
imental [4] results have demonstrated that its density ImðΠÞ
is measurable. The IPM density is sensitive to both
the intensity inhomogeneity and polarization of the fields

FIG. 1. Illustration for different optical momentum vortices.
(a) Canonical momentum in helically phased beams. (b) Belin-
fante’s spin momentum in circularly polarized beams. (c) Imagi-
nary Poynting momentum in cylindrical vector beams.
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[2–5,19,25–27]. It can arise in various cases [2–5,25–27]
except for plane waves and circularly polarized paraxial
beams [19], and its transverse nature is ubiquitous [2–
5,19,25,26]. Then an important question is whether ImðΠÞ
can be completely azimuthal, forming a vortex. And if so,
whether this vortex can contribute to a spatially global
angular momentum of the fields.
In this Letter, we show that the azimuthal IPM density is

present in the cylindrical vector beams of donut intensity
distribution and spiral polarization. It constitutes a close
circulation structure around the beam axis, as illustrated in
Fig. 1(c). Depending on the radial position, its direction can
be either azimuthal or antiazimuthal, which, as we shall
show, makes it to produce a “virtual” angular momentum of
nonzero density and vanishing spatially global value. We
will evaluate the optical force acting on a probe particle and
examine the possibility to realize orbital rotation using this
IPM vortex, without the CM and BSM vortices.
The cylindrical vector (CV) beam is created by an in-

phase superposition of radially polarized (RP) and azimu-
thally polarized (AP) beams of special amplitude relation.
Analytically, the electric and magnetic fields for AP and RP
beams propagating along the z direction in cylindrical
coordinates (r, ϕ, z) take the form [cf. Eqs. (2.9)–(2.14) in
Ref. [28] ]:

EAP ¼ E0Uðr; zÞeikze⌢ϕ; HAP ¼ − i
μω

∇ ×EAP;

HRP ¼ H0Uðr; zÞeikze⌢ϕ; ERP ¼
i
εω

∇ ×HRP; ð2Þ

where E0 and H0 are amplitude constants, Uðr; zÞ is a
paraxial solution to the full wave vector equation, which is
ϕ independent. A temporal dependence expð−iωtÞ of the
fields is considered throughout.
The RP and AP beams have no helical phase structures,

nor global spin, because they can be treated as the super-
position of two Laguerre-Gaussian beams with equal
magnitude, opposite circular polarization, and azimuthal
mode index l ¼ �1 [29]. We can thus expect that their in-
phase superposition will not produce spin and orbital
angular momentum [30], and hence no azimuthal BSM
nor CM densities. Letting H0 ¼ cεE0=n, the CV beam can
be expressed as

E ¼ EAP þ ERP

¼
�
E0Uðe⌢r þ e

⌢
ϕÞ þ

ic
nωr

E0

∂ðrUÞ
∂r e

⌢
z

�
eikz;

H ¼ HAP þHRP

¼
�
nE0

μc
Uð−e

⌢
r þ e

⌢
ϕÞ − i

μωr
E0

∂ðrUÞ
∂r e

⌢
z

�
eikz; ð3Þ

which constitutes a decomposition of the fields into
longitudinal and transversal components (see, e.g., [31]

on the relevance of such kind of decomposition of the wave
fields). To derive (3), we have ignored ∂U=∂z compared
with kU, which is a correct assumption for a paraxial beam
whose transverse profile changes slowly with position z
along the propagation direction [23,31].
Using (3), the complex Poynting momentum density [3]

for the CV beam is readily obtained in terms of its
longitudinal and transversal components:

Π ¼ 1

2c2
ðE� ×HÞ

¼ E2
0

μωc2
Im

�
U� ∂U

∂r
�
e
⌢
r

− iE2
0

2μωrc2

�
2jUj2 þ r

∂jUj2
∂r

�
e
⌢
ϕ þ

n
μc3

E2
0jUj2e⌢z:

ð4Þ

Then the time-averaged momentum density can be
expressed as [2,3,16]:

P¼ReðΠÞ¼ E2
0

μωc2
Im

�
U�∂U

∂r
�
e
⌢
rþ

n
μc3

E2
0jUj2e⌢z: ð5Þ

The radial component is small, and it vanishes at the beam
waist plane where U is real valued [28]. Additionally, the
paraxial spin-orbital decomposition [31,32] yields PO ¼ P
and PS ¼ 0.
In this Letter, we will focus on the IPM density:

ImðΠÞ ¼ − E2
0

2μωc2r

�
2jUj2 þ r

∂jUj2
∂r

�
e
⌢
ϕ; ð6Þ

which in contrast with its real part Eq. (5), has no
longitudinal component, possessing an azimuthal one only.
This special directionality is accompanied by a vanishing
divergence ∇ · ImðΠÞ ¼ 0. In this connection, one should
note that the IPM is not divergenceless in most cases [2–
5,19,25–27]. On multiplying ImðΠÞ by a radius vector r
from the axis, we arrive at a pseudovector with a dimension
of angular momentum density

R ¼ r × ImðΠÞ ¼ − E2
0

2μωc2

�
2jUj2 þ r

∂jUj2
∂r

�
e
⌢
z: ð7Þ

We coin R as the density of a reactive angular momen-
tum (RAM), which is the imaginary counterpart of the
time-averaged angular momentum density [23]:

M ¼ r × P ¼ − nr
μc3

E2
0jUj2e⌢ϕ: ð8Þ

The mechanical effects of the IPM density, like that of
the BSM density [2,3], cannot be felt by purely electric, or
purely magnetic, dipolar particles [33]. However, it acts on
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magnetodielectric particles, namely those supporting both
electric and magnetic moments induced by the electric and
magnetic vectors of the illuminating wave [2–6,24]. For
simplicity, we shall focus on its role in the generic dipolar
interaction of light with an isotropic particle, which can be
found in the magnetoelectric interference force [24]

F ¼ 8πcμ2rk4

3n
½Imðαeα�mÞImðΠÞ − Reðαeα�mÞP�; ð9Þ

with μr ¼ μ=μ0 being the relative permeability of the
medium, while αe and αm are the electric and magnetic
polarizabilities of the dipoles induced in the particle. It
follows that there is an azimuthal force acting on the
particle for the vector beam, i.e.,

Fϕ ¼ 8πcμ2rk4

3n
½Imðαeα�mÞImðΠϕÞ�

¼ − 4πμ2rk3E2
0

3μc2r
Imðαeα�mÞ

�
2jUj2 þ r

∂jUj2
∂r

�
e
⌢
ϕ; ð10Þ

which is provided solely by the IPM, and constitutes a force
moment continuously rotating the particle.
To show the IPM vortex and its rotational mechanical

effects, simulations are performed by using the finite-
difference time-domain method. A common expression
is used for describing the beam profile [28,34]:
Uðr; zÞ ¼ ½r=ðwξ2Þ� exp½−r2=ðw2ξÞ�, where the complex
parameter ξ is ξ ¼ 1þ izλ=ð2πw2Þ. The waist size w
and wavelength λ are set to be w ¼ 1 μm and
λ ¼ 600 nm, for which the paraxial theory is valid at r ≤
2 μm as j∂U=∂zj=jkUj ≤ 0.018 ≪ 1 [35]. Figure 2 shows
the field distribution at the waist plane (z ¼ 0) of the CV
beam propagating in water. The field is axially symmetric,

with a ringlike intensity pattern and spiral polarization
[cf. Fig. 2(a)]. The axial CM density [cf. Fig. 2(b)] and
negligible BSM density (not shown), suggest that the field
carries no spin nor orbital angular momentum. Remarkably,
the IPM density completely aligns in the azimuthal direc-
tion [Figs. 2(c) and 2(d)]. The azimuthal component
preserves constant signs at r < 1 μm, but changes at
r > 1 μm. This should be caused by its intensity inhomo-
geneity-related term [cf. Eq. (6)].
To observe the azimuthal force, high-index dielectric

(e.g., Si and GaAs) nanoparticles can be used, as they have
both dipolar electric and magnetic responses to the incident
electromagnetic wave [36–40]. As an example, Fig. 3
shows the time-averaged optical forces acting on a Si
sphere of radius: 70 nm as its radial position varies at the
waist plane of the CV beam, which are calculated through
the Maxwell stress tensor [16]. The refractive index of Si is
adopted from the experimental data of Ref. [41].
Thanks to the annular intensity profile, the particle

experiences a radial restoring force Fr, which results from
the intensity gradient [33,42] [see also Eqs. (42) and (43) in
Ref. [24] ], and tends to confine the sphere at r ¼ 0.7 μm.
As expected from our previous analysis, the azimuthal
force Fϕ arises, and its magnitude is remarkable comparing
it with the radial force. It exhibits a trend similar to that of
ImðQϕÞ [cf. Fig. 2(c)] as the radial position of the particle
varies in the beam waist. On the other hand, Fϕ is nonzero
at r ¼ 0.7 μm (i.e., at the radial equilibrium position),
which ensures rotation of the sphere when radial trapping
occurs.
The fact that Si (and other high-index magnetoelectric)

spheres can be rotated in water is important for experi-
ments, as this offers us a procedure to accurately measure
the local IPM by directly observing the periodic motion (or
rotation) velocity of such an isotropic spherical probe.

FIG. 2. Simulated field transversal spatial distribution at the
waist plane of a cylindrical vector beam. (a) Intensity distribution
with arrows indicating the polarization direction. (b) CM density.
(c) Radial, azimuthal, and axial components of the IPM density
versus the radial position. (d) IPM vortex.

FIG. 3. Radial variation of the optical forces on a silicon
sphere (diameter: 140 nm), located at the waist plane of the
cylindrical vector beam shown in Fig. 2. The illumination
wavelength is λ ¼ 600 nm.

PHYSICAL REVIEW LETTERS 123, 233902 (2019)

233902-3



Finally, we must point out that, despite the local RAM
originating from the azimuthal IPM density, it does not lead
to a global angular momentum. In fact, it is easy to verify
that the integral of the RAM density over the whole beam
cross section yields a zero value,

Z
2π

0

Z
∞

0

rRdrdϕ∼
Z

2π

0

Z
∞

0

�
2rjUj2þr2

∂jUj2
∂r

�
drdϕ¼0;

ð11Þ

as r2jUj2 ¼ 0 for r → ∞. Obviously, the positive azimuthal
IPM densities at r > 1 μm compensate the RAM accumu-
lated by the negative azimuthal IPM densities at r < 1 μm
[cf. Fig. 2(c)]. Therefore, it can be seen that the RAM is a
virtual quantity for the vector beam.
In summary, we have analyzed the vector field created

with the in-phase superposition of radially and azimuthally
polarized beams of equal magnitude, and found that such a
field reveals a nontrivial vortex structure, namely the
azimuthal IPM density. Thus, the azimuthal IPM density,
along with the azimuthal CM [1,7–9,22,23] and BSM [13–
15,18] densities, completes the set of all possible momen-
tum vortices in electromagnetic fields. Its unique direction
indicates that the mechanical effect of this momentum can
be exploited to continuously rotate objects. This constitutes
a new mechanism for light-driven rotation of objects, since
such rotation does not rely on the optical spin nor orbital
angular momenta, neither the use of inhomogeneous nor
anisotropic objects.
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