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High-precision knowledge of electromagnetic form factors of nuclei is an important current activity
in nuclear and atomic physics. Such precision mandates that effects of the nonzero spatial extent of the
constituent nucleons be treated carefully. A series of simple, Poincaré-invariant, composite-proton models
that respect the Ward-Takahashi identity and in which quarks are confined are used to study such effects.
All of the models display a general theorem showing how the medium modification of proton structure
must occur. Combining this result with lattice QCD calculations leads to a conclusion that a bound proton
must be larger than a free one.
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Nucleons are composite particles made of quarks,
gluons, and quark pairs bound by the confining forces
of QCD. The composite nature means that nucleons bound
in nuclei must be different than free ones. Many years
of experiment and theory have told us the answer: the
differences exist but are not very large. Early evidence was
found in the EMC effect [1,2] and also in kaon-nucleus
scattering [3]. Recent reviews are Refs. [4–7]. This Letter
presents a new approach to medium modification of the
nucleon wave function that is related both to experiment
and to lattice QCD calculations. The key result is that the
proton gets bigger when it is bound in a nucleus.
The focus here is on elastic electron-nucleus scattering,

which has the simplifying feature that the initial and final
nuclei are in the same quantum state. Elastic electromag-
netic form factors of nuclei can be compared with ab initio
nuclear structure calculations. For example, [8] measures
isotope shifts in the radii of Ca isotopes to better than 1%
accuracy. New muonic atom measurements [9] that deter-
mine the charge radii of light nuclei are now at about the
1% level. Furthermore, a planned Jefferson Laboratory
experiment [10,11] aims to measure the difference between
the charge radii of 3He and 3H to a precision of �0.02 fm.
These high precision goals create a need to improve the
treatment of the effects of the spatial extent of constituent
nucleons.
This is because the nuclear electromagnetic form factor

FAðQ2Þ has been approximated as

FAðQ2Þ ¼ FAðQ2ÞGEðQ2Þ; ð1Þ

where a spin-0 nucleus absorbs a spacelike photon of
four momentum qμ, and Q2 ¼ −q2, GEðQ2Þ ¼ F1ðQ2Þ −
½Q2=ð4M2Þ�F2ðQ2Þ is the proton Sachs electric form factor,
where F1;2 are Dirac and Pauli form factors (other charged
particles are ignored here for simplicity). FAðQ2Þ is the

probability amplitude for a point proton to absorb momen-
tum without changing the nuclear state and M is the
proton mass. Equation (1) is denoted as the factorization
approximation.
The only derivation of Eq. (1) [12,13] is based on

nonrelativistic classical physics. A quantum mechanical
result is obtained by assuming that only free form factors,
F1;2ðQ2Þ, appear. The factorization approximation has
been widely used even though it cannot be completely
accurate because the struck protons are bound in nuclei.
No examination has appeared in the literature.
Here I construct a diverse set of models of the free proton

and then place that proton in the nucleus. Elastic electron-
proton scattering is shown in Fig. 1(a). In free space,
p2 ¼ p02 ¼ ðpþ qÞ2 ¼ M2. The initial and final protons
are on their mass shell. Suppose instead the proton is bound
in the nucleus [see Fig. 1(b)]. Interactions with nuclei
involve evaluating Feynman graphs containing an integral
over the four-momentum p of the initial nucleon that
ranges over all possible values of p2 from−∞ to∞, and the
equality between square of the four-momentum and M2 is
not maintained. The nucleon form factors should depend on
γ · p and γ · p0 and functions [such as ðγ · pÞ2 ¼ p2]
thereof [14].
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FIG. 1. Photon-nucleon electromagnetic interaction. (a) Photon
hits quark in a free nucleon. (b) Photon hits quark in bound
nucleon. (c) Photon hits quark in a bare proton bound in the
nucleus.
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As a result medium modifications of nucleon structure
may be determined by the virtuality, V ≡ p2 −M2 ¼ p02 −
M2 (via Lorentz and time-reversal invariance) for elastic
scattering on nuclei. The average value of the virtuality
can be computed from the spectral function [15], but
nuclear wave functions are not presented as a function
of specific values of V. Therefore a first-order expansion in
powers of V is used. The small nature of the binding energy
might seem to justify neglecting differences between p2,
p02, and M2. However, a better estimate can be obtained
from the Schrödinger equation. For example, within
the nuclear Hartree-Fock approximation a single particle
wave function obeys the Schrödinger equation, with a
dominant central binding potential Uð≪ MÞ. Therefore
p⃗2=ð2MÞ þ U ¼ −B, where B > 0 is the binding energy
and p0 ¼ M − B. Then p2−M2¼ðM−BÞ2− p⃗2−M2 ≈
2MU. In the centers of typical nuclei, U is about
−50 MeV [16], so that ðp2 −M2Þ=M2 ≈ −0.1, signifi-
cantly different from zero, but small enough to be consid-
ered an expansion parameter.
The detailed study of the factorization approximation

begins by evaluating the Feynman graphs of Figs. 1(a)
and 1(b). The aim is to compute the dependence on the
off-mass-shell invariants that appear in the nucleus. The
calculations are done so that the Ward-Takahashi identity,
which guarantees current conservation, is respected. For the
present models, including the diagram of Fig. 1(c) along
with that of Fig. 1(b) is necessary for this to occur.
Furthermore, the models must embody confinement.
These two aspects are dealt with below to arrive at the
key result:

ΔF1;2 ¼ V
∂F1;2

∂M2
: ð2Þ

How can a property of the proton depend upon its mass, a
value known to very high precision? The proton mass can
be varied at will in different models. Equation (2) is
obtained when M2 is associated with the four-momentum
squared that appears in propagators of the Bethe-Salpeter
equations determining the wave functions of the models
used below. Moreover, results of fundamental lattice QCD
calculations of nucleon properties depend implicitly on the
proton mass via quark-mass dependence. In this Letter,
lattice QCD calculations are used only to provide input, not
to test the idea of proton expansion itself.
Equation (2) accounts for many effects that can be

cast in the form of a modified form factor times the
virtuality. It is very compact, sums a set of significant
contributions, and arises naturally from using relativistic
dynamics. It does not include the interactions between
photons and charged mesons that are exchanged between
two nucleons and the effects of non-nucleonic baryon
components (such as the Δ isobar) of the nuclear wave
function.

Next I explain how Eq. (2) is derived. Five different
models of the free proton are used: (i) quark-diquark, with
spin 0 quarks and diquarks with a scalar vertex function;
(ii) quark-diquark with spin 1=2 quark, spin 0 diquark with
a scalar vertex function; (iii) quark-diquark with spin 1=2
quark, spin 1 diquark with a vector vertex function (QED);
(iv) proton sometimes fluctuates into its neutron-πþ com-
ponent, pseudovector coupling; and (v) proton sometimes
fluctuates into a component consisting of a Δ isobar and
a pion, pseudovector coupling. None of these models is
realistic by itself, but each characterizes a significant aspect
of proton structure.
Evaluating the Feynman graph of Fig. 1(a) for general

off-shell kinematics renders it suitable for inclusion in
Fig. 1(b). The first-order approximation in V allows the
separate study of each term that contributes to medium
modifications. The models employed here share common
features, so that the generality of Eq. (2) can be displayed
by discussing only the salient aspects of the models. For
each, the proton wave function involves a vertex function
that converts a proton of momentum to a system of two
constituents. One of the constituents, denoted by c, is
charged and interacts with the photon, and the other,
denoted by d, is a spectator. This notation is used for both
quark-spectator models and pion-spectator models. In each
model the three propagators provide a denominator of the
following form: D≡ ðk2 −m2

cÞ½ðkþ qÞ2 −m2
c�½ðp − kÞ2 −

m2
d�: These are combined with three Feynman parameters

x, y, z, respectively, such that xþ yþ z ¼ 1, with a
useful symmetry between x and y. The factor D can thus
be re-written: D → ðk2 − ΔÞ3, as

Δ ¼ xyQ2 þm2
cðxþ yÞ þ zm2

d −
p2 þ p02

2
zð1 − zÞ: ð3Þ

The on-mass-shell value of Δ, denoted as Δon is obtained
by replacing p2 and p02 by M2. By adding and subtracting
the term M2zð1 − zÞ one obtains:

Δ ¼
�
1 − V

∂
∂M2

�
Δon; ð4Þ

The model-specific scattering amplitudes depend on inverse
powers of Δ (no terms involving logΔ arise because Pauli-
Villars regularization is used), so that one uses 1=Δ ≈
1=Δonf1þ ðV=ΔonÞ½∂=ð∂M2Þ�Δong and the denominator
terms are seen to give one set of contributions to Eq. (2).
The terms in the numerator take many forms including:

=p;=p0;pμ;p0μ¼ðpþqÞμ;2kμ;k ·k0;=k=k0, (k0 ≡ kþ q) where μ
is the Lorentz-index of the photon-quark (or photon-pion)
vertex. Let us start with the term =p, which is rewritten to the
first order in V as follows:
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=p ¼ M þ p2 −M2

=pþM
≈M þ V

2M
¼

�
1þ V

∂
∂M2

�
M; ð5Þ

and the pattern emerges. The same manipulations can be
done for =p0. Another term that enters is pμ. Calculations are
done in the Breit frame, with μ ¼ 0 or in the Drell-Yan
frame with μ ¼ þ. Then the identity 2pμ ¼ γμ=pþ =p0γμ þ
iσμνqν is useful because the manipulations for =p, =p0

described above are applicable. The term involving σμν

contributes only to the on-mass-shell part of F2.
The models involving struck pions contain a numerator

term of the form 2ðkμ þ pμz − qμÞ → 2pμz because of
parity and using either of the two mentioned frames.
The model with an intermediate Δ isobar contains terms
of the form k · k0 and =k=k0. Upon applying the stated variable
transformations, one finds

k · k0 → k2 þ z2p · p0 þQ2

2
zð1 − zÞ: ð6Þ

The k2 term is evaluated along with the denominators that
are discussed above. The third term does not involve off-
shell proton kinematics. The term p · p0 may be rewritten as
q · pþ p2 ¼ 1

2
ðp02 þ p2 − q2Þ, and subtracting and adding

2M2 leads again to the result of Eq. (2). The manipulations
needed to handle the term =k=k0 are essentially the same, upon
using Eq. (5).
The net result is that Eq. (2) emerges from each term.

The general argument is that for each of the terms that enter
one may add and subtract the on-shell expression. To the
first order in V∶ all terms in the difference between the
on- and off-mass-shell expressions can be expressed as a
derivative.
It is necessary to maintain the Ward-Takahashi (WT)

identity [17], stating that the amplitude Γμðpþ q; pÞ for a
photon of momentum q to be absorbed by a fermion of
momentum p is related to the fermion-propagator
Sð=pÞ ¼ f1=½=p −M0 − Σð=pÞ�g, via

q · Γðpþ q; pÞ ¼ S−1ð=pþ =qÞ − S−1ð=pÞ; ð7Þ

where M0 the bare mass and ΣðpÞ the self-energy of the
fermion. If this is respected, electron-nucleus interactions
will satisfy current conservation. A similar identity is
obtained for photon-pion interactions. Satisfying the WT
identity is necessary for high-precision nuclear calculations
to be valid.
If one evaluates the term of Fig. 1(a), in which the

photon-quark interaction is denoted as ΓðqÞ, one finds:

q · ΓðqÞ ¼ Σð=pÞ − Σð=p0Þ; ð8Þ

and the right-hand side vanishes for on-mass-shell kin-
ematics [p2ðp02Þ ¼ M2]. The graph of Fig. 1(a) is a
reasonable model for free protons, but when the proton

is bound to a nucleus [Fig. 1(b)] the WT identity is not
respected. This problem is fixed by including the graph of
Fig. 1(c). In that case one obtains q · Γ ¼ ð=pþ =qÞ − =p−
fΣ½ðpþ qÞ2 − Σðp2Þ�gS−1ðpþ qÞ − S−1ðpÞ. The first two
terms arise from Fig. 1(c), and the next two from Fig. 1(b).
The next step is to handle quark confinement. Detailed

evaluations of the Feynman graph of Fig. 1(b) fail dra-
matically to obey the factorization approximation, Eq. (1),
if the quark propagator is that of a free quark. To see this,
examine Eq. (3). For on-mass-shell kinematics, the value of
Δ > 0 for all values of x, y, and z provided that the stability
condition M < mc þmd is obeyed. A similar stability
condition holds for pion-baryon intermediate states. In
evaluating the Feynman diagram of Fig. 1(b), one integrates
over all values of p2, Δ can be negative. and the in-medium
proton form factor is complex valued. The free form factor
is real valued, so the factorization approximation Eq. (1)
must break down. Moreover, the singularity associated with
lack of confinement plays havoc in numerical integration,
and the existence of such singularities in models is
unphysical because nuclei are stable. Finally, the appear-
ance of zeros in Δ means that an expansion of nucleon
properties in terms of the virtuality cannot converge.
Negative values of Δ can also be understood by examin-

ing the proton self-energy, Σðp02Þ which involves the
denominator ðk2−m2

cÞ½ðp0−kÞ2−m2
d�→ ½k2þp02uð1−uÞ−

m2
cð1−uÞ−m2

du�2, where u is another Feynman parameter
with 0 ≤ u ≤ 1. This denominator has zeros for values of
p0 such that p02 > ðmc þmdÞ2, which is the condition
required to knock a quark out of the proton. In Fig. 2, the
final q and d can both be on the mass shell whenever
p02 > ðmc þmdÞ2, which would not occur for systems
respecting confinement.
Implementing the main feature (no singularities) of

confinement must be included in the present models.
This is done using quark (or diquark) masses that occur
in complex conjugate pairs, as summarized in the review
[18] and used in Refs. [19–26]. Using a diquark (spectator)
propagator of the form

SCðpÞ ¼
X

λ¼−1;1

1

p2 þm2
d þ iλϵ

ð9Þ

in Euclidean space removes the unphysical singularities.
The previous analysis of the effects of virtuality has been

q d

p

FIG. 2. Photon of momentum q2 ¼ −Q2 hits quark in a free
proton of four-momentum p. Final quark and diquark can both be
on the mass shell.
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applied using Eq. (9) to the models discussed above with
the result Eq. (2). Furthermore, detailed Euclidean space
calculations using the models described above have shown
that the results of using such a propagator can be obtained
in Minkowski space by simply using a complex diquark
mass and obtaining the form factors by taking the real part
of the computed amplitude. The net result is that using
complex-valued quark masses removes the unphysical
singularities initially present in the simple models used
here. This is necessary to justify expansions in terms of
virtuality.
The first application of the key result, Eq. (2) is to study

the proton charge radius [27] r2E ≡ −6G0
Eð0Þ. Equation (2)

leads to a change in r2E given by δr2E ¼ V½ð∂r2EÞ=ð∂M2Þ�
Evaluation requires knowing how the proton radius
depends on its mass. This derivative is negative for the
five presented models. The virtuality must have negative
values, so the proton radius must expand when it is bound
in a nucleus.
For the models presented here an off-mass-shell proton

is equivalent to an on-mass-shell proton of a mass less
than M. This is because off-shell effects of the energy
denominator Δ of Eq. (3) (in which p2 replaces theM2 that
appears as an eigenvalue of the Bethe-Salpeter eqaution)
and the off-shell effects of the numerator end up looking
like Eq. (2). Based on obtaining Eq. (2) in all of the models,
I assume that it is a generally valid, first-order treatment of
virtuality and discuss the necessary derivative in a broader
framework.
In the MIT bag model [28] (with vanishing quark masses)

the bag radius is inversely proportional to the mass of
the nucleon, leading to ðM2=r2EÞ½ð∂r2EÞ=ð∂M2Þ� ¼ −1. The
counterpoint is the nonrelativistic quark model, e.g.,
Ref. [29], in which harmonic oscillator confinement is used
with the size parameter: b2 ∝ 1=mq. This leads to
ðM2=r2EÞ½ð∂r2EÞ=ð∂M2Þ� ¼ −1=2. In Ref. [30] the dominant
isovector contribution to the square of the nucleon radius
is proportional to lnM=mπ , where mπ is the pion mass.
Using Eq. (4.2) therein leads to ðM2=r2EÞ½ð∂r2EÞ=ð∂m2

πÞ� ¼
−0.6ðM2=m2

πÞ, potentially a very large effect. This idea has
been developed further: e.g., [31]. In each of these more
general models the proton mass increases with increasing
pion mass so again the derivative ½ð∂r2EÞ=ð∂M2Þ� is negative.
Because V < 0, one again finds that the radius of a bound
proton must be larger than that of a free one.
It is natural to turn to lattice QCD calculations of the

proton radius because hadronic properties are computed as
a function of quark masses (via the pion mass). One could
expose the proton to an attractive, strong, external scalar
field, ϕ, interacting with quarks, which is constant over the
proton volume. An external vector field would not change
the quark wave function [32–35]. The ϕ acts as a central
nuclear potential giving bound nucleons their nonzero
virtuality. One can calculate the proton radius using various
values of ϕ. But a constant external scalar field acting

on quarks is equivalent to shifting the quark masses. Thus
one needs only to compute the radius as a function of
the quark mass to evaluate the expansion. Lattice QCD
results provide a more precise evaluation than the widely
used models [32–35] that require modeling of quark
confinement.
Lattice QCD calculations of the proton charge radius

have made significant recent progress [36–43], but various
technical difficulties cause results to typically undershoot
experiment by about 25%. The isovector radius is easier to
calculate and dominant because the square of the proton
charge radius is significantly larger than that of the neutron.
References [36,37] computed the isovector radius for pion
masses from 135 to 320 MeV using an analytic para-
metrization of the m2

π dependence. Using their formula
gives ð∂rE=∂m2

πÞ ≈ −2.6� 0.3 fmGeV2. The nucleon
mass is well described as a function of the pion mass as
M ≈M0 þ 1.14 GeV−1m2

π [44] and this dependence in m2
π

is expected [45]. Using the results [36,37] one finds

δrE ¼ V
∂rE
∂m2

π

∂m2
π

∂M2
¼ −

V
M2

ð1.1� 0.1Þ fm; ð10Þ

with the only stated uncertainty arising from ½ð∂rEÞ=
ð∂m2

πÞ�. Taking V=M2 ¼ −0.1 (the value at the nuclear
center) leads to an increase of the proton radius by about
0.11 fm or about 12%. The sign is well determined as the
product of two numbers that are each strongly constrained
to be negative. The magnitude is a reasonable estimate,
improvable by future lattice calculations.
The expansion can be measured in six ways [7]. Our

compact formulation encompasses all of the models cited
therein. A 12% increase in the proton radius is a rather large
effect, and one might wonder why it is has not already been
seen. Most previous attempts use quasielastic scattering
[46–49] in which the final-state proton is essentially free.
Thus any effect would be reduced by a factor of 2, even
before accounting for reductions caused when the reaction
occurs near the nuclear surface. The current effect is not
ruled out.
Our increase in radius represents a violation of the

extensively used factorization approximation Eq. (1). Its
importance can be understood by examining three-nucleon
systems [10,11]. The current experimental status is in
Refs. [50,51], and that of the theory is in [52,53]. The
standard procedure [54] for computing nuclear charge radii
is to expand each of the terms of Eq. (1) to first-order inQ2,
yielding R2

A ¼ R2
pt þ r2E (if the neutron contribution is

neglected). The average virtuality for 3He is reported
[15] as V=M2 ¼ −0.073. Using this and Eq. (10), the
computed shift in the proton radius is 0.08 fm. Using Rpt ¼
1.54 fm [53] and changing rE from 0.84 to 0.92 fm
corresponds to a 2% increase in the computed 3H charge
radius. The 2% is comparable to present experimental
uncertainties, but future experiments [9,10] plan on
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achieving better than 1%. The increase of 0.08 fm is much
larger than changes caused by meson exchange currents or
variations in cutoffs of chiral perturbation theory [53]. This
expansion is testable.
Reference [11] has already achieved high-accuracy

measurements of the Ca isotopes charge radii. It reports
“unexpectedly large charge radii,” based on discrepancies
between their measurements and nuclear theory results.
Confronting the present expansion idea with these data
requires a new development in nuclear theory, namely the
precision calculation of virtuality.
This Letter treats nuclear medium effects on electro-

magnetic form factors. The calculations have many general
features, so that one may speculate that Eq. (2) extends to
other matrix elements of other one-body operators, O such
that hOðp2Þi ≈ hOðM2Þi þ ðp2 −M2Þð∂=∂M2ÞhOðM2Þi.
O could represent deep-inelastic scattering, and the present
formulation could lead to an improved understanding of the
EMC effect. The simplicity of this relation is very appeal-
ing. If valid, describing a wide variety of medium effects
from the unified viewpoint of examining the dependence on
virtuality would be possible.
Our calculations show that, for many models, a bound

proton is larger than a free one. The necessary derivatives
with respect to mass that appear in Eq. (2) may be
computed using lattice QCD. Perhaps other proton proper-
ties can also be treated this way. A new approach to
understanding nuclear modifications of nucleon properties
that strengthens the connection between lattice QCD
calculations and nuclear physics is provided here.
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