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By analyzing a2.93 fb~! data sample of e* e collisions, recorded at a center-of-mass energy of 3.773 GeV
with the BESIII detector operated at the BEPCII collider, we report the first observation of the semileptonic
DT transition into the axial-vector meson DT — K;(1270)%¢*v, with a statistical significance

greater than 10c6. Its decay branching fraction is determined to be B[DT — K(1270)%"v,] =
(2.30 £ 0.26107% £ 0.25) x 1073, where the first and second uncertainties are statistical and systematic,
respectively, and the third originates from the input branching fraction of K,(1270)° — K~ z*°.

DOI: 10.1103/PhysRevLett.123.231801

Studies of semileptonic (SL) D transitions, mediated
via ¢ = s(d)¢"v, at the quark level, are important for
the understanding of nonperturbative strong-interaction
dynamics in weak decays [1,2]. Those transitions into
S-wave states have been extensively studied in theory and
experiment. However, there is still no experimental con-
firmation of the predicted transitions into P-wave states.

In the quark model, the physical mass eigenstates of the
strange axial-vector mesons, K;(1270) and K,(1400), are
mixtures of the 'P; and *P; states with a mixing angle 6 .
These mesons have been thoroughly studied via z, B, D,
w(3686), and J/y decays, as well as via Kp scattering
[3-12]. Nevertheless, the value of Ok, is still very con-
troversial in various phenomenological analyses [13-20].
Studies of the SL D transitions into K;(1270) provide

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

important insight into the mixing angle 6k . The improved
knowledge of 0, is essential for theoretical calculations
describing the decays of z [13], B [15,21], and D [22,23]
particles into strange axial-vector mesons, and for inves-
tigations in the field of hadron spectroscopy [24].

Earlier quantitative predictions for the branching fractions
(BFs) of D) — K,(1270)e*v, were derived from the
Isgur-Scora-Grinstein-Wise (ISGW) quark model [1] and its
update, ISGW?2 [2]. ISGW2 implies that the BFs of D) —
K,(1270)e*v, are about 0.1 (0.3)%. However, the model
ignores the mixing between ' P, and P, states. Recently, the
rates of these decays were calculated with three-point QCD
sumrules (3PSRs) [25], the covariant light-front quark model
(CLFQM) [26], and light-cone QCD sum rules (LCSRs)
[27]. In general, the predicted BFs range from 1073 to 1072
[25-27], and are sensitive to O and its sign. Measurements
of D) — K(1270)e*v, will be critical to distinguish
between theoretical calculations, to explore the nature of
strange axial-vector mesons, and to understand the weak-
decay mechanisms of D mesons.

Currently, there is very little experimental information
available about semileptonic D decays into axial-vector
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mesons, with the only result being the reported evidence for
the process D° — K,(1270)"e*v, from the CLEO
Collaboration [28]. This Letter presents the first observa-
tion of DT — K,(1270)%¢ v, [29] by using an e*e~ data
sample corresponding to an integrated luminosity of
2.93 tb~! [30] recorded at a center-of-mass energy of /s =
3.773 GeV with the BESIII detector [31].

Details about the design and performance of the BESIII
detector are given in Ref. [31]. Simulated samples pro-
duced with the GEANT4-based [32] Monte Carlo (MC)
package, which includes the geometric description of the
BESII detector and the detector response, are used to
determine the detection efficiency and to estimate the
backgrounds. The simulation includes the beam-energy
spread and initial-state radiation (ISR) in the e*e™ annihi-
lations modeled with the generator KKMC [33]. The inclusive
MC samples consist of the production of the DD pairs, the
non-DD decays of the y(3770), the ISR production of the
J/w and w(3686) states, and the continuum processes
incorporated in KKMC [33]. The known decay modes are
modeled with EVTGEN [34] using BFs taken from the Particle
Data Group [35], and the remaining unknown decays from
the charmonium states with LUNDCHARM [36]. The final-
state radiation (FSR) from charged final-state particles are
incorporated with the pHOTOS package [37]. The D" —
K(1270)%* v, decay is simulated with the ISGW2 model
[38], the K (1270)" is set to decay into all possible processes
containing the K~z *z° combination. The resonance shape
of K(1270)° is parametrized by a relativistic Breit-Wigner
function, and the mass and width of K, (1270)° are fixed at
the world-average values 1272 = 7 MeV and 90 &+ 20 MeV,
respectively [35].

The measurement employs the ete™ — w(3770) —
D™D~ decay chain. The D~ mesons are reconstructed
by their hadronic decays to K*z~z~, Kdz~, Kz~ n"2°,
Kon= 7%, KSntzn~n~, and K"K~-zn~. These inclusively
selected events are referred to as single-tag (ST) D~
mesons. In the presence of the ST D~ mesons, candidate
DT = K,(1270)°¢* v, decays are selected to form double-
tag (DT) events. The BF of D* — K,(1270)% "y, is
given by

Bgi. = NDT/(NtSO”lt“gSL)’ (1)

where N and Npr are the ST and DT yields in the data
sample, eg; = X;[(ehrNip)/ (e5pNSL)] is the efficiency of
detecting the SL decay in the presence of the ST D~ meson.
Here i denotes the tag mode, and gt and epy are the ST and
DT efficiencies of selecting the ST and DT candidates,
respectively.

We use the same selection criteria as discussed in
Refs. [39-41]. All charged tracks are required to be within
a polar-angle (0) range of |cosf| < 0.93. All of them,
except for those from Kg decays, must originate from an

interaction  region defined by V,, <lcm and
|V.| <10 cm. Here, V,, and |V,| denote the distances
of closest approach of the reconstructed track to the
interaction point (IP) in the xy plane and the z direction
(along the beam), respectively.

Particle identification (PID) of charged kaons and pions
is performed using the specific ionization energy loss
(dE/dx) measured by the main drift chamber (MDC) and
the time of flight. Positron PID also uses the measured
information from the electromagnetic calorimeter (EMC).
The combined confidence levels under the positron,
pion, and kaon hypotheses (CL,, CL, and CLg, respec-
tively) are calculated. Kaon (pion) candidates are
required to satisfy CLx > CL, (CL, > CLg). Positron
candidates are required to satisfy CL, > 0.001 and
CL,/(CL,+CL,+ CLg) > 0.8. To reduce the back-
ground from hadrons and muons, the positron candidate
is further required to have a deposited energy in the EMC
greater than 0.8 times its momentum in the MDC.

K9 candidates are reconstructed from two oppositely
charged tracks satisfying |V,| < 20 cm. The two charged
tracks are assigned as # 7z~ without imposing further PID
criteria. They are constrained to originate from a common
vertex and are required to have an invariant mass within
(Mgt = Mgo| <12 MeV/c?, where Mo is the KY nomi-
nal mass [35]. The decay length of the K% candidate is
required to be greater than twice the vertex resolution away
from the IP.

Photon candidates are selected using the information
from the EMC. It is required that the shower time is within
700 ns of the event start time, the shower energy be greater
than 25 (50) MeV if the crystal with the maximum
deposited energy in that cluster is in the barrel (end-cap)
region [31], and the opening angle between the candidate
shower and any charged tracks is greater than 10°. Neutral
7" candidates are selected from the photon pairs with the
invariant mass within (0.115,0.150) GeV/c?. The momen-
tum resolution of the accepted photon pair is improved by a
kinematic fit, which constrains the yy invariant mass to the
7° nominal mass [35].

The ST D~ mesons are distinguished from the combi-
natorial backgrounds by two variables: the energy differ-
ence AE = Ep- — Eye,m and the beam-energy constrained

mass Mpc = /Eoeyy — |Pp-|7, Where Epen is the beam
energy, and pp- and Ep- are the measured momentum and
energy of the ST candidate in the eTe™ center-of-mass
frame, respectively. For each tag mode, only the one with
the minimum |AE]| is kept. The combinatorial backgrounds
in the Mpc distributions are suppressed by requiring AE
within (=55, +40) MeV for the tag modes involving a z°,
and (—25,425) MeV for the other tag modes.

Figure 1 shows the My distributions of the accepted ST
candidates in the data sample for various tag modes. The
ST yield for each tag mode is obtained by performing a
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FIG. 1. The Mg distributions of the ST candidates in the data

sample (dots with error bars). Blue solid curves are the fit results
and red dashed curves represent the background contributions of
the fit. The pair of red arrows in each subfigure indicate the Mpc
window.

maximum-likelihood fit to the corresponding My distribu-
tion. In the fits, the D~ signal is modeled by a MC-simulated
My shape convolved with a double-Gaussian function and
the combinatorial-background shape is described by an
ARGUS function [42]. The candidates in the Mpc signal
region, (1.863, 1.877) GeV/c?, are kept for further analysis.
The total ST yield is N§f = 1522474 4 2215, where the
uncertainty is statistical.

In the analysis of the particles recoiling against the
ST D~ mesons, candidate events for the DT —
K(1270)%*v, channel are selected from the remaining
tracks that have not been used for the ST reconstruction.
The K, (1270)° meson is reconstructed using its dominant
decay K(1270)° - K~=ztz°. It is required that there are
only three good charged tracks available for this selection.
One of the tracks with charge opposite to that of the D~ tag
is identified as the positron. The other two oppositely
charged tracks are identified as a kaon and a pion,
according to their PID information. Moreover, the kaon
candidate must have charge opposite to that of the positron.
Other selection criteria, which have been optimized
by analyzing the inclusive MC samples, are as follows.

To effectively veto the backgrounds associated with
wrongly paired photons, the z° candidates must have a
momentum greater than 0.15 GeV/c and a decay angle
| €08 Ogecay 20| = |E,, = E,,|/|P| less than 0.8. Here, E,,
and E,, are the energies of y; and y,, and Do is the
momentum of the 7° candidate. To suppress the potential
backgrounds from the hadronic decays D™ — K-zt 7+ 7°,
the invariant mass of the K~ zTz%T combination,
M-+ 0.+ is Tequired to be smaller than 1.78 GeV/c?.
Information concerning the undetectable neutrino is
inferred by the kinematic quantity Ui = Eniss — | Pmiss s
where E, ;i and P are the missing energy and momen-
tum of the SL candidate, respectively, calculated by E, ;s =
Epeam — XE; and P = pp+ — Z;p; in the ete™ center-
of-mass frame. The index j sums over the K=, 7™, 7%, and
e of the signal candidate, and E; and p ; are the energy and
momentum of the jth particle, respectively. To improve the
U s Tesolution, the DT energy is constrained to the beam

energy and pp+ = —pp-+ /E%ez1m - m%ﬁ, where pp- is the

unit vector in the momentum direction of the ST D™, and
mp+ is the D' nominal mass [35]. To partially recover the
effects of FSR and bremsstrahlung (FSR recovery), the
four-momenta of photon(s) within 5° of the initial positron
direction are added to the positron four-momentum mea-
sured by the MDC.

Events that originate from the process D' —
K*(892)°(— K-n']e*v,, in which a fake z° is wrongly
associated to the signal decay, form a peaking background
around +0.02 GeV in the U, distribution and around
1.15 GeV/c? inthe M-+ o distribution. To suppress these
backgrounds, we define an alternative kinematic quantity

;niss = Einiss - |ﬁ£niss|’ where E:niss = Epeam — z“jEj and
Phiss = Pp+ — Z;P;» and j only sums over the K-, z+,
and e™ candidates of the signal candidate. Since these
backgrounds form an obvious peak around zero in the U
distribution, the U/ values of the SL candidates are
required to lie outside (—0.09,0.03) GeV.

Figure 2(a) shows the distribution of M -+ 0 Vs U ;s Of

the accepted D™ — K~ z*7%*v, candidate events in the
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FIG. 2.

miss

(a) The M - ,+ 0 vs Uy distribution of the SL candidate events and (b), (c) the projections to M - ,+,0 and U y;, Tespectively,

with the residual y distributions of the 2D fit. Dots with error bars are data. Blue solid, red, and black dashed curves are the fit result, the

fitted signal, and the fitted background, respectively.
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data sample after combining all tag modes. A clear signal,
which concentrates around 1.27 GeV/c? in the M-, 0
distribution and around zero in the U, distribution, can
be seen. The DT yield is obtained from a two-dimensional
(2D) unbinned extended maximum-likelihood fit of the
data presented by the distribution in Fig. 2(a). In the
fit, the 2D signal shape is described by the MC-simulated
shape extracted from the signal MC events of DT —
K(1270)%¢*v,. The 2D background shape is modeled
by the MC-simulated shape obtained from the inclusive
MC samples and the number of background events is a free
parameter in the fit. The smooth 2D probability density
functions of signal and background are modeled by the
corresponding MC-simulated shape [43,44]. The projec-
tions of the 2D fit on the My- -0 and U, distribu-
tions are shown in Figs. 2(b) and 2(c). In the fit, we
ignore the contributions from nonresonant decays Dt —
K-ntnletv,, K*(892)°2%*v,, K*(892) z"etv,, and
K= p(770)*e*v,, as well as the possible interference
between them due to the low significance of these con-
tributions with the limited size of the data set. The two
decays D* — K (1400)%e*v, and D* — K*(1430)% ",
are indistinguishable, and as no significant contribution is
found from either source, these components are not
included in the fit. From the fit, we obtain the DT yield
of Npt = 119.7 £ 13.3, where the uncertainty is statistical.
The statistical significance of the signal is estimated to be
greater than 100, by comparing the likelihoods with and
without the signal components included, and taking the
change in the number of degrees of freedom into account.

For each tag mode, the DT efficiency is estimated with
the corresponding signal MC events. The average signal
efficiency is determined to be &g = 0.0742 + 0.0007.
Compared to eg, the signal efficiencies for individual
tag modes vary within £10%. The reliability of the MC
simulation is tested by examining typical distributions of
the SL candidate events. The data distributions of momenta
and cos @ of K=, zt, z°, and e™ are consistent with those of
MC simulations.

By inserting Npr, €51, and N§ into Eq. (1), we
determine the product of Bg; and the BF of K,(1270)° —
K- nt7° (Bg) to be

B By, = (1.06 £ 0.1275098) x 1073,

where the first and second uncertainties are statistical and
systematic, respectively.

The systematic uncertainties in the BF measurement,
which are assigned relative to the measured BF, are discussed
below. The DT method ensures that most uncertainties
arising from the ST selection cancel. The uncertainty from
the STyield is assigned to be 0.5% [39-41], by examining the
relative change in the yield between data and MC simulation
after varying the Mpc fit range, the signal shape, and the
endpoint of the ARGUS function.

The uncertainties associated with the efficiencies
of e tracking (PID), K~ tracking (PID), z* tracking (PID),
and 7° reconstruction are investigated using data and MC
samples of e*e~™ — yete™ events and DT DD hadronic
events. Small differences between the data and MC
efficiencies are found, which are —(0.03 4+ 0.15)%,
+(0.94 +0.27)%, +(2.63 +£0.32)%, —(0.14 +0.18)%,
+(0.03 £ 0.13)%, —(0.08 £0.18)% for e* tracking, e™
PID, K~ tracking, K~ PID, n" tracking, and n* PID,
respectively. The MC efficiency is then corrected by these
differences and used to determine the central value of the
BF. In the studies of e™ tracking (PID) efficiencies, the 2D
(momentum and cos 0) tracking efficiencies of data and
MC simulation of eTe™ — yeTe™ events are reweighted to
match those of D* — K,(1270)%e*v, decays. After cor-
rections, we assign the uncertainties associated with the e
tracking (PID), K~ tracking (PID), z* tracking (PID), and
7% reconstruction to be 1.0% (1.0%), 1.0% (0.5%), 0.5%
(0.5%), and 2.0%, respectively.

The uncertainty associated with the M g- .+ 0,+ require-
ment is estimated by varying the requirement by
+0.05 GeV/c?, and the largest change on the BF, 0.9%,
is taken as the systematic uncertainty. Similarly, the
systematic uncertainty in the U/, requirement is estimated
to be 1.7% by varying the corresponding selection window
by 40.01 GeV. The uncertainty of the input BFs of
K(1270)° is estimated by changing the BF of each
subdecay by +1o¢. The largest variation in the detection
efficiency, 0.5%, is assigned as the related systematic
uncertainty. The uncertainty of the 2D fit is estimated to
be J9% by examining the BF changes with different fit
ranges, signal shapes (dominated by varying the width of
K(1270)° by +10), and background shapes. The uncer-
tainty arising from background shapes is mainly due to
unknown nonresonant decays, and is assigned as the
change of the fitted DT yield when they are fixed by
referring to the well-known nonresonant fraction in D™ —
K*(892)%*y, [45]. The uncertainty arising from the
limited size of the MC samples is 1.0%.

The uncertainty due to FSR recovery is evaluated to be
1.3% which is the change of the BF when varying the FSR
recovery angle to be 10°. The total systematic uncertainty is
estimated to be fg;g% by adding all the individual con-
tributions in quadrature.

When making use of the world average of By, =
0.467 £ 0.050 [35,46], we obtain

Bg = (2.30 £ 0.267938 4+ 0.25) x 1073,

where the third uncertainty, 10.7%, is from the external
uncertainty of the input BF B,

To summarize, by analyzing an eTe~ collision data
sample of 2.93 fb~! taken at /s = 3.773 GeV, we report
the observation of D™ — K (1270)%*v, and determine its
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decay BF for the first time. The measured BF is 1.4% of the
total semileptonic Dt decay width, which lies between the
ISGW prediction of 1% and the ISGW2 prediction of 2%.
Our BF of D* — K (1270)%*v, agrees with the CLFQM
and LCSR predictions when 0 = 33° or 57° [26], and
clearly rules out the predictions when setting 0k, negative
[27]. Making use of the measured value for the BF of
D° — K,(1270)"e*v, [28] and the world-average life-
times of the D° and Dt mesons [35], we determine
the partial decay width ratio ['[DT — K,(1270)%*
v,)/TID° - K{(1270)"e*v,] = 1.27J7, which is consis-
tent with unity as predicted by isospin conservation. This
demonstration of the capability to observe K;(1270)
mesons in the very clean environment of SL D°*) decays
opens up the opportunity to conduct further studies of the
nature of these axial-vector mesons. A near-future follow-
up analysis of the dynamics of these SL decays with higher
statistics will allow for deeper explorations of the inner
structure, production, mass and width of K;(1270) and
K,(1400), as well as providing access to hadronic-
transition form factors.
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