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We construct the first dynamically stable ergostars (equilibrium neutron stars that contain an ergoregion)
for a compressible, causal equation of state. We demonstrate their stability by evolving both strict and
perturbed equilibrium configurations in full general relativity for over a hundred dynamical timescales
(≳30 rotational periods) and observing their stationary behavior. This stability is in contrast to earlier
models which prove radially unstable to collapse. Our solutions are highly differentially rotating
hypermassive neutron stars with a corresponding spherical compaction of C ¼ 0.3. Such ergostars can
provide new insights into the geometry of spacetimes around highly compact, rotating objects and on the
equation of state at supranuclear densities. Ergostars may form as remnants of extreme binary neutron star
mergers and possibly provide another mechanism for powering short gamma-ray bursts.
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Introduction.—Two key characteristics of black holes
(BHs) are the event horizon and the ergoregion. The former
represents the “surface of no return,” i.e., the boundary of
the region of spacetime we cannot communicate with (at
least in classical theory), while the latter is a region where
there are no timelike static observers and all trajectories
(timelike or null) must rotate in the direction of rotation of
the BH (frame dragging). For stationary, rotating spacetimes
the existence of an event horizon implies the existence of an
ergoregion, but the opposite is not true. Ergoregions are
associated to two important astrophysical processes that are
both related to the extraction of energy from a rotating BH:
first, as described by Penrose [1], since the energy of a
particle as seen by an observer at infinity can be negative
inside the ergoregion, energy extraction is possible through a
simple decay. Second is the powering of relativistic jets
through the Blandford-Znajek process [2]. Although accord-
ing to the membrane paradigm [3], jet formation is asso-
ciated with the BH horizon; Komissarov pointed out [4,5]
that the threading of the ergoregion by magnetic field lines
and the subsequent twisting of them due to frame dragging is
all that is necessary for the energy creation of a relativistic
jet, while a horizon is not. Preliminary force-free numerical
simulations of ergostars using the Cowling approximation
confirm this hypothesis [6].
A stationary, asymptotically flat spacetime possesses a

timelike Killing vector that asymptotically corresponds to
time translations. This vector inside an ergoregion tips over
and becomes spacelike, making the conserved total energy
of a freely moving particle there negative with respect to
the asymptotic observer. A nonaxisymmetric perturbation
that radiates positive energy at infinity will make the
negative energy in the ergoregion even more negative in

order for the conservation of energy to be satisfied. This
will lead to a cascading instability that was first discovered
by Friedman [7] and recently was put on a rigorous footing
by Moschidis [8]. It belongs to the class of “rotational
dragging instabilities” whose most famous member is the
so-called Chandrasekhar-Friedman-Schutz (CFS) instabil-
ity (induced by gravitational radiation) [9–11] valid for any
rotating star, irrespective of its rotation rate. In this Letter,
we call stars that contain ergoregions ergostars.
The fact that the ergoregion instability was considered

“secondary”was not only due to the scarcity of rotating star
models exhibiting such behavior but, equally importantly,
due to its very long secular (≳ gravitational radiation)
timescale [12–14]. Although the existence of ergoregions
in rotating stars has been questioned [15], they were found
by a number of authors since the first work of Wilson [16],
who employed a compressible equation of state (EOS),
differential rotation, and an assumed density distribution.
Butterworth and Ipser [17] and more recently Ansorg,
Kleinwachter, and Meinel [18] constructed self-consistent,
rapidly rotating, incompressible stars containing ergoregions
(see also [19,20] for ergoregions in the self-gravitating
Vlasov system). A larger parameter space was investigated
by Komatsu, Eriguchi, and Hachisu [21] (KEH) who
presented self-consistent solutions with a polytropic EOS
and differential rotation, reaching all the way up to the most
extreme toroidal configurations (Rp=Re ¼ 0, where Rp, Re

are the polar and equatorial radii, respectively).
The question we want to answer in this Letter is

threefold: first, whether any of the known ergostars with
a compressible and causal EOSs are dynamically stable?
If not, whether the instability is caused by the ergoregion
or is it intrinsic to the other properties of the star. This is
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investigated by evolving ergostars together with nearby
equilibria that do not exhibit ergoregions. The whole
analysis is performed in full general relativity and without
any approximation, such as the slow-rotation approxima-
tion typically used in perturbation analysis. Finally, is it
possible to identify any dynamically stable ergostars? We
will show that all of the models presented in [21] that we
have evolved are dynamically unstable and argue that it will
be very difficult, if not impossible, to have stable ergostars
with a simple polytropic EOS. However, we were able to
construct a compressible EOS that leads to dynamically
stable ergostars that persist for our entire integration
timescale, which is at least ∼20 ms (≳100 dynamical
times). We present a full general relativistic analysis of
multiple models with this property.
Initial data.—Our initial data are constructed with the

Cook-Shapiro-Teukolsky (CST) code [22] using two EOSs.
The first one is a Γ ¼ 3 polytrope, which is known to
produce differentially rotating ergostars [21]. Our motiva-
tion was to find stable configurations that ideally can
represent neutron star (NS) mergers; thus we have chosen
to investigate the Γ ¼ 3 case since it produced ergostars
at higher Rp=Re, i.e., with almost spheroidal geometries.
A second criterion for our choice is to find ergostar models
with a low T=jWj so that they are less susceptible to
nonaxisymmetric instabilities. Here T, W are the rotational
and gravitational potential energy of the stars, respectively.
The second EOS we use is based on the ALF2 EOS [23]
and denoted as ALF2cc. We replace the region where the
rest-mass density ρ0 ≥ ρ0s ¼ ρ0 nuc ¼ 2.7 × 1014 g=cm3 by

p ¼ σðρ − ρsÞ þ ps: ð1Þ

Here σ is a dimensionless parameter, ρ is the total energy
density, and ps is the pressure at ρs. The solutions presented
in this Letter assume that σ ¼ 1.0, i.e., a causal core, which
represents the maximally compact, compressible EOS [24].
Apart from a small crust (∼6%Re), the density profiles of

all our models resemble the ones found in quark stars which
exhibit a finite surface density. In this way we conjecture
that it would be possible to construct dynamically stable
quark stars having an ergoregion. A parameter study for
other values of σ, as well as different matching densities,
will be presented elsewhere [25].
The differential rotation law is a choice needed to solve

for hydrostatic equilibrium. We employ the so-called j-
const. law [26], which is written as jðΩÞ ¼ A2ðΩc −ΩÞ,
where j is the relativistic specific angular momentum, A is a
constant that determines the degree of differential rotation
and has units of length, andΩc is the angular velocity at the
center of the star. Other choices like the ones presented in
Refs. [27,28] are also possible [25]. All our initial models
are shown in Table I.
Evolutions.—We use the ILLINOIS GRMHD adaptive-

mesh-refinement code (see, e.g., [29]), which employs
the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formu-
lation of the Einstein’s equations [30,31] to evolve the
spacetime with the standard puncture gauge conditions.
The equations of hydrodynamics are solved in conserva-
tion-law form adopting high-resolution shock-capturing
methods. The pressure is decomposed as a sum of a cold
and a thermal part, p ¼ pcold þ ðΓth − 1Þρ0ðϵ − ϵcoldÞ
where pcold, ϵcold are the pressure and specific internal
energy as computed from the initial data EOS. They are
calculated using either a polytropic pressure-density rela-
tion or Eq. (1). For the thermal part we take Γth ¼ 5=3. The
growth of nonaxisymmetric modes is monitored by com-
puting Cm ¼ R

ρ0ut
ffiffiffiffiffiffi−gp

eimϕd3x [32]. In our simulations
we used two resolutions, for the ALF2cc models with
Δxmin ¼ 153, 92 m. For the Γ ¼ 3 models we used three
resolutions with Δxmin ¼ 200, 140, 92 m. Here Δxmin is the
step interval at the finest refinement level. Note that for
the same Δxmin there is more grid coverage across the star
for the Γ ¼ 3 models because Re is greater.
Snapshots during the evolution of the ergostars with the

ALF2cc and the Γ ¼ 3 EOSs are depicted in Figs. 1 and 2

TABLE I. The equilibrium models. The polytropic constant used for the Γ ¼ 3models yields a maximum spherical gravitational mass
of 4.066 M⊙, which coincides with the maximum spherical gravitational mass of the ALF2cc EOS. Parameter Â ¼ A=Re, where Re, the
equatorial radius, determines the degree of differential rotation, Rp=Re is the ratio of polar to equatorial radius,M0 is the rest mass,M is
the ADM mass, J is the ADM angular momentum, T=jWj is the ratio of kinetic to gravitational energy, Pc is the rotational period of the
star that corresponds to its central angular velocity Ωc, Ωc=Ωs is the ratio of the central to the surface angular velocity, and tdyn ∼ 1=

ffiffiffi
ρ

p
the dynamical timescale.

Model EOS ER Â−1 Rp=Re M0½M⊙� M½M⊙� Re½km� J=M2 T=jWj Pc=M Ωc=Ωs tdyn=M

iA0.2-rp0.50 ALF2cc ✗ 0.2 0.5000 6.683 5.360 12.62 0.8698 0.2266 27.31 1.328 6.9
iA0.2-rp0.47 ALF2cc ✗ 0.2 0.4688 6.973 5.587 12.55 0.8929 0.2423 25.21 1.359 6.6
iA0.2-rp0.45 ALF2cc ✓ 0.2 0.4531 7.130 5.709 12.49 0.9035 0.2501 24.18 1.378 6.5
iA0.3-rp0.47 ALF2cc ✓ 0.3 0.4688 6.900 5.514 11.52 0.8670 0.2354 20.55 1.753 6.7
iA0.4-rp0.47 ALF2cc ✓ 0.4 0.4688 6.679 5.334 11.04 0.8323 0.2205 17.52 2.216 6.9
g3-iA0.4-rp0.44 Γ ¼ 3 ✗ 0.4 0.4375 6.832 5.761 14.62 0.8617 0.2302 20.24 2.027 6.3
g3-iA0.4-rp0.42 Γ ¼ 3 ✓ 0.4 0.4219 6.929 5.845 14.41 0.8704 0.2372 19.21 2.073 6.2
g3-iA0.5-rp0.36 Γ ¼ 3 ✓ 0.5 0.3594 6.688 5.718 12.27 0.8640 0.2473 13.11 2.876 6.4
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where two prime examples of each category are plotted.
Figure 1 shows the normalized rest-mass density as well as
the ergosurface (gtt ¼ 0, inner green donut) of the model
iA0.2-rp0.45 at four instances t=Pc ≈ 0, 5, 10, 30 and
constitutes our prime, dynamically stable ergostar using the
ALF2cc EOS that exhibits a causal core, Eq. (1). As it is
clear from that figure, the star retains both its axisymmetric
structure as well as the geometry of the ergoregion for
the whole period of our evolution that reaches approx-
imately 30 rotation periods or 100 dynamical timescales.
This ergostar is the first member that exhibits an ergoregion
along a constant rest-mass (central) density ρ0 ¼ 4.52 ×
1014 g=cm3 sequence with a decreasing Rp=Re ratio and

the j-const law with Â ¼ 5. All equilibrium models before
that (i.e., for larger ratios of Rp=Re) do not contain any
ergoregions, while all models after that, i.e., for greater
deformations (smaller ratios of Rp=Re), contain ergore-
gions whose size increases with increasing deformation.
In other words, for the particular sequence of rest-mass
density and differential rotation law, ergostar iA0.2-rp0.45
is (i) the most spheroidal, (ii) has the lowest T=W, and
(iii) has the smallest ergoregion. Note that T=W ¼ 0.25,
which is certainly at the boundary of dynamical stability
[33,34]. Less deformed models iA0.2-rp0.50 and iA0.2-
rp0.47 belong to the same sequence as the ergostar iA0.2-
rp0.45 and have the same differential rotation law but

FIG. 1. Rest-mass density and the ergosurface for the ALF2cc EOS, model iA0.2-rp0.45, at four different instances of time. The green
donut indicates the ergoregion. Stability is maintained for this equilibrium ergostar.

FIG. 2. Similar to Fig. 1 but for the Γ ¼ 3 EOS model g3-iA0.4-rp0.42. This equilibrium ergostar undergoes dynamical collapse to a
BH. The black inner spheroid in the last frame shows the apparent horizon.
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contain no ergoregions. These normal star equilibria have
also a smaller value of T=W, and our simulations confirm
that they are dynamically stable similarly.
The Fig. 3 left panel shows the growth of nonaxisym-

metric modes for normal star iA0.2-rp0.50 as well as
ergostars iA0.2-rp0.45, iA0.3-rp0.47, iA0.4-rp0.47 using
Δxmin ¼ 153 m. The same behavior is observed at higher
resolution with Δxmin ¼ 92 m. Evidently the evolution of
all stars maintains axisymmetry on dynamical timescales.
Particularly during the last 10 rotation periods both the
normal star iA0.2-rp0.50 and the ergostar iA0.2-rp0.45
(which is shown also in Fig. 1) show a saturation of the
m ¼ 1, 2 growth amplitude. Ergostars iA0.3-rp0.47 and
iA0.4-rp0.47 have the same central density as iA0.2-rp0.45
but larger differential rotation: Â ¼ 3.33 and 2.5, respec-
tively. In the Supplemental Material [35] we present addi-
tional evidence for the dynamical stability of these models
by seeding them with an m ¼ 1 or m ¼ 2 density pertur-
bation and inspecting their nongrowth in the timescale of
our simulations. In addition we show that these stars are
stable to quasiradial density perturbations.
Figure 2 shows the normalized rest-mass density and

ergosurface for the Γ ¼ 3 EOS ergostar g3-iA0.4-rp0.42
evolved using Δxmin ¼ 200 m at four instances t=Pc ≈ 0,
4, 5, and at BH formation. Although the criterion t · t ¼
gtt ¼ 0 (where t ¼ ∂t is the time coordinate basis vector)
for ergoregion identification does not strictly hold in the
nonstationary spacetime of the collapsing star, it is still a
reasonable measure given the stationary initial and final
gravitational equilibria. This model is the first member that
exhibits an ergoregion along a constant rest-mass density
ρ0 ¼ 3.846 × 1014 g=cm3 sequence with Â ¼ 2.5. All
equilibrium models with less deformation do not contain
any ergoregions, while all models with larger deformations
contain larger size ergoregions. Also ergostar g3-iA0.4-
rp0.42 is less deformed and has smaller T=W than any of
the Γ ¼ 3 models of Ref. [21]; therefore it is less prone to
bar-mode instabilities. Other models in Ref. [21] containing

ergoregions have very small ratios of Rp=Re and much
higher T=W; thus the possibility of being dynamically
unstable as well is much higher. This was indeed proven
recently in a select number of such extreme toroids in [36].
Figure 3 middle panel shows the growth of nonaxisym-
metric modes for the Γ ¼ 3 EOS models g3-iA0.4-rp0.44
(normal star), g3-iA0.4-rp0.42 (ergostar shown in Fig. 2)
and g3-iA0.5-rp0.36 (also an ergostar) until just after BH
formation. The small values of Cm=C0 imply the free fall
collapse of those models is axisymmetric. The resolution
used is Δxmin ¼ 140 m. In the right panel of Fig. 3 we plot
T=W for all the models discussed above. As it is evident the
Γ ¼ 3 models all collapse while T=W slightly decreases
from their initial values. Also ergostar iA0.2-rp0.45 has the
largest T=W in the ALF2cc EOS set of models while the
ergostar with the highest degree of differential rotation,
iA0.4-rp0.47, has the smallest. The radial instability of
the Γ ¼ 3 EOS models of Table I is verified by using
three different resolutions with the highest one having
Δxmin ¼ 92 m. The evolution of the shape of the ergo-
sphere for the model g3-iA0.4-rp0.42 is presented in the
Supplemental Material [35].
Discussion.—In this Letter we presented dynamically

stable equilibrium rotating NSs that contain ergoregions.
The EOS that we employed is causal at the core and ALF2
at the outer layers of the star. We also proved that
previously calculated polytropic ergostars are dynamically
unstable. The secular evolution of our models will probably
be determined by the Friedman instability [7] in the
absence of other dissipative mechanisms. Despite that,
and given the long timescales involved, the possibility of
existence of such equilibria raises a number of questions,
the most obvious of them being the fate of ergostars
exhibiting internal dissipative mechanisms, such as viscos-
ity or magnetic fields (which may serve as turbulent
viscosity). Preliminary calculations of magnetic effects
in fixed spacetimes [6] have shown that such systems
can launch jets similar to BHs surrounded by magnetized

FIG. 3. Time evolution of the m ¼ 1, 2 modes for the ALF2cc EOS models (left panel), the Γ ¼ 3 EOS models (middle panel), and
T=W (right panel). The corresponding dynamical timescales are listed in Table I.
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disks. If the merger of two NSs forms an ergostar remnant
that can launch a jet, the timescale for jet formation will
be earlier than the one for a normal hypermassive NS
[37,38]. This feature may have consequences in the
theoretical analysis of events like GW170817 and its short
gamma-ray burst counterpart GRB 170817A. Such open
problems, as well as questions related to the range of EOSs
and differential rotating laws that can lead to ergostars,
or the possibility of binary ergostar remnants, are under
investigation [39].

It is a pleasure to thank R. Haas and V. Paschalidis for
useful discussions. We also thank the Illinois Relativity
group REU team, G. Liu, K. Nelli, and M. N. T. Nguyen for
assistance in creating Figs. 1 and 2. This work was
supported by NSF Grant No. PHY-1662211 and NASA
Grant No. 80NSSC17K0070 to the University of Illinois at
Urbana-Champaign, as well as by JSPS Grant-in-Aid for
Scientific Research (C) 15K05085 and 18K03624 to
the University of Ryukyus. This work made use of the
Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science
Foundation Grant No. TG-MCA99S008. This research is
part of the Blue Waters sustained-petascale computing
project, which is supported by the National Science
Foundation (Grants No. OCI-0725070 and No. ACI-
1238993) and the State of Illinois. Blue Waters is a joint
effort of the University of Illinois at Urbana-Champaign
and its National Center for Supercomputing Applications.
Resources supporting this work were also provided by the
NASA High-End Computing (HEC) Program through
the NASA Advanced Supercomputing (NAS) Division at
Ames Research Center.

*tsokaros@illinois.edu
[1] R. Penrose, Riv. Nuovo Cimento 1, 252 (1969); Gen.

Relativ. Gravit. 34, 1141 (2002).
[2] R. D. Blandford and R. L. Znajek, Mon. Not. R. Astron.

Soc. 179, 433 (1977).
[3] K. S. Thorne, R. H. Price, and D. A. Macdonald, The

Membrane Paradigm (Yale University Press, New Haven,
1986).

[4] S. S. Komissarov, Mon. Not. R. Astron. Soc. 350, 407
(2004).

[5] S. S. Komissarov, Mon. Not. R. Astron. Soc. 359, 801 (2005).
[6] M. Ruiz, C. Palenzuela, F. Galeazzi, and C. Bona, Mon.

Not. R. Astron. Soc. 423, 1300 (2012).
[7] J. L. Friedman, Commun. Math. Phys. 63, 243 (1978).
[8] G. Moschidis, Commun. Math. Phys. 358, 437 (2018).
[9] S. Chandrasekhar, Astrophys. J. 161, 561 (1970).

[10] J. L. Friedman and B. F. Schutz, Astrophys. J. 221, 937
(1978).

[11] J. L. Friedman, Commun. Math. Phys. 62, 247 (1978).
[12] N. Comins and B. F. Schutz, Proc. R. Soc. A 364, 211

(1978).
[13] S. Yoshida and Y. Eriguchi, Mon. Not. R. Astron. Soc. 282,

580 (1996).
[14] R. Brito, V. Cardoso, and P. Pani, Lect. Notes Phys. 906, 1

(2015).
[15] B. F. Schutz and N. Comins, Mon. Not. R. Astron. Soc. 182,

69 (1978).
[16] J. R. Wilson, Astrophys. J. 176, 195 (1972).
[17] E. M. Butterworth and J. R. Ipser, Astrophys. J. 200, L103

(1975).
[18] M. Ansorg, A. Kleinwachter, and R. Meinel, Astron. As-

trophys. 381, L49 (2002).
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