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We present the first determination of the Hubble constant H0 from strong lensing time delay data and
type Ia supernova luminosity distances that is independent of the cosmological model. We also determine
the spatial curvature model independently. We assume that light propagation over long distances is
described by the Friedmann-Lemaître-Robertson-Walker (FLRW) metric and geometrical optics holds, but
make no assumption about the contents of the Universe or the theory of gravity on cosmological scales.
We find H0 ¼ 75.7þ4.5

−4.4 km=s=Mpc and ΩK0 ¼ 0.12þ0.27
−0.25 . This is a 6% determination of H0. A weak prior

from the cosmic microwave background on the distance to the last scattering surface improves
this to H0 ¼ 76.8þ4.2

−3.8 km=s=Mpc and ΩK0 ¼ 0.18þ0.25
−0.18 . Assuming a zero spatial curvature, we get

H0 ¼ 74.2þ3.0
−2.9 km=s=Mpc, a precision of 4%. The measurements also provide a consistency test of the

FLRW metric: we find no evidence against it.
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Introduction.—Determining the Hubble constant and
spatial curvature. The value of the Hubble constant H0

has emerged as the strongest point of tension between
predictions of the ΛCDM model of cosmology and
observations. Fitting the ΛCDM model to cosmic micro-
wave (CMB) data of the Planck satellite givesH0 ¼ 67.4�
0.5 km=s=Mpc [1]. (Our error bars are 68% limits, while
ranges and inequalities are 95% limits.) On the other hand,
distance ladder measurements of local type Ia supernovae
(SNe) that are only weakly dependent [2] on the cosmo-
logical model give H0 ¼ 74.03� 1.42 km=s=Mpc, over
4σ away from the Planck result [3]. Several studies have not
found any systematics that could explain the difference
[2,4–10].
IndependentdeterminationsofH0 canprovide clues about

the origin of the discrepancy. The time delay between
strongly lensed images of time variable sources is inversely
proportional to the Hubble constant [11]. Time delay
measurements therefore provide the timescale for H−1

0

directly, without the need for a distance ladder, and time
delays dependonly on late universe physics, unlike theCMB
and baryon acoustic oscillations (BAO). In order to deter-
mine H0 from time delays, the dimensionless distances
between the observer, lens, and source are also needed. In all
of the determinations so far, this has been done by assuming
some cosmological model. Recently, the H0LiCOW project

[12] has derived H0 ¼ 72.0þ2.3
−2.6 km=s=Mpc [13] in the

spatially flat ΛCDM model using a sample of four lenses
[13–16]. The inferred value of H0 is strongly model
dependent. The first three H0LiCOW lenses yielded H0 ¼
71.9þ2.4

−3.0 km=s=Mpc assuming the spatially flat ΛCDM
model, but this changes to 79.1þ9.3

−8.7 km=s=Mpc if the dark
energy equation of state is not fixed to −1 [17].
The model dependence can be reduced by determining

the distances from the observer to the lens and source
directly from observations of type Ia SNe. However, the
relation of these distances to the distance from the lens to
source cannot be determined directly from the observa-
tions. In Friedmann-Lemaître-Robertson-Walker (FLRW)
universes it depends on the spatial curvature. Turning this
around, we can use combined observations of time delays
and SNe distances to determine not only H0 but also the
spatial curvature model independently, assuming that the
universe is described by the FLRWmetric. Furthermore, by
observing two or more lens-source pairs and comparing the
inferred values of the spatial curvature, we in principle have
a consistency test for the FLRW metric. Failure of the
FLRW approximation could be related to extra dimensions
[18], violation of statistical homogeneity and isotropy [19],
or the effect of deviation from exact homogeneity
and isotropy on the average expansion rate, i.e., back-
reaction [20].
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For strong lensing, a consistency condition based on
image deformation has been proposed and implemented
[21,22]. The method was proposed to be extended to time
delays in Ref. [21] and estimates have been done on
simulated data [23–27]. We will now for the first time
apply it to real data. A consistency condition based on
comparing distance and expansion rate has also been
implemented [28–40], and proposed for luminosity dis-
tance and parallax distance [41].
Theoretical aspects.—Distances. If space is exactly

homogeneous and isotropic, spacetime is described by
the FLRW metric

ds2 ¼ −dt2 þ aðtÞ2
1 − Kr2

dr2 þ aðtÞ2r2dΩ2; ð1Þ

where K is a constant related to the spatial curvature. The
Hubble parameter is H ≡ _a=a, and its present value is
denoted by H0. Let DAðzl; zsÞ be the angular diameter
distance of a source at redshift zs as seen at redshift zl.
From Eq. (1) we find, assuming that geometrical optics
holds, tðzÞ is monotonic, that the dimensionless distance
dðzl; zsÞ≡ ð1þ zsÞH0DAðzl; zsÞ (which is independent
of H0) is

dðzl; zsÞ ¼
1
ffiffiffiffiffiffiffiffi

ΩK0
p sinh

�

ffiffiffiffiffiffiffiffi

ΩK0

p

Z

zs

zl

H0

HðzÞ dz
�

; ð2Þ

whereΩK0 ≡ −K=H2
0. For ΩK0 ¼ 0 the expression reduces

to a linear function of the integral in the argument, and for
ΩK0 < 0 it becomes a sine function of the argument. We
denote dðzÞ≡ dð0; zÞ.
Distance and spatial curvature. We assume that dðzÞ is

monotonic. Using Eq. (2), dls ≡ dðzl; zsÞ can then be
written in terms of dl ≡ dðzlÞ and ds ≡ dðzsÞ as [21,42,43]

dls ¼ ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ΩK0d2l

q

− dl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ΩK0d2s

q

: ð3Þ

As noted in Ref. [21], we can solve for the spatial curvature
in Eq. (3) to get a consistency condition for the FLRW
metric:

kS ¼ −
d4l þ d4s þ d4ls − 2d2l d

2
s − 2d2l d

2
ls − 2d2sd2ls

4d2l d
2
sd2ls

; ð4Þ

where kS ≡ −ΩK0. If the combination of distances (4) is
observationally found not to be equal for any two pairs of
ðzl; zsÞ, the FLRW metric is ruled out.
Distance and time delay. In strong lensing, light propa-

gating from the source splits into several bundles to form
multiple images. The difference Δt12 ≡ t2 − t1 in the
arrival times t1 and t2 of two images labeled 1 and 2 at
angular coordinates θ1 and θ2 on the sky is [44]

Δt12ðθ1; θ2Þ ¼ H−1
0

dlds
dls

fðθ1; θ2Þ ¼ DΔtfðθ1; θ2Þ; ð5Þ

where fðθ1; θ2Þ depends on the structure of the lens and
the second equality defines the time delay distance
DΔtfðθ1; θ2Þ. Given observations of Δt12, dl, and ds and
a model for the lens, we can determine H0 and ΩK0 from
Eqs. (3) and (5).
Observations.—Supernova data. The Pantheon compi-

lation [45] provides distance moduli μi up to an absolute
magnitude M for 1048 SNe that we collect into the vector
X̂, where Xi ¼ μi þM and the hat denotes Pantheon
data, and its covariance matrix C (including both statistical
and systematic uncertainties). We rely on the reduced X̂
data given the fit to light-curve parameters and the fit to
their coefficients entering in the X estimator with simu-
ltaneous bias corrections performed by the Pantheon
Collaboration. The highest redshift in the compilation is
2.3. Luminosity distances DL can be inferred with arbi-
trary overall normalization maximizing the likelihood L
defined by −2 logL ¼ ðX̂ − XÞTC−1ðX̂ − XÞ. The model
vector X is determined by μi¼5log10½DLðθ;ziÞ=ð10pcÞ�¼
5log10dLðθ;ziÞþMH0

, where θ denotes the model para-
meters and zi the SN redshift. Given the degeneracy
with the absolute magnitude M, the value of MH0

¼
−5log10ð10 pcH0Þ is arbitrary and we fix it to MH0≈43.2
(corresponding to an nonphysical H0 ¼ 70 km=s=Mpc).
Note that in any spacetime for any metric theory of gravity
dL ≡H0DL ¼ ð1þ zÞd holds true [46,47].
The data were preprocessed by the Pantheon team by

fitting coefficients that relate the light-curve parameters to
the distance modulus, and simultaneously correcting
related biases. This analysis is model dependent, because
bias corrections assume dark energy with a constant
equation of state [45,48]. The dependence on the cosmo-
logical model is marginal for changes in the reference
cosmology within typical statistical uncertainties. Further-
more, studies using the JLA SN dataset [49], dependent on
bias corrections done assuming the ΛCDM model (and
specific values of light-curve parameters), have found that
the model dependence of the light-curve parameters is
weak [32,33,37,50,51]. Therefore, this model dependence
is likely a subdominant source of bias. There are also
significant differences between light curve fitters (for dis-
cussion of these and other systematics, see Refs. [52,53]),
but they are also likely a subdominant source of errors.
Strong lensing data. There are currently four strong

lensing systems with accurately modeled time delay dis-
tances: B1608þ 656 [15], RXJ1131 − 1231 [16],
HE0435 − 1223 [14], and SDSSJ1206þ 4332 [13]. The
highest source redshift is 1.789, well below the maximum
redshift of the Pantheon SNe. For 1608, 1131, and 0435 we
use the skewed log-normal approximations to the like-
lihood functions derived in Ref. [17]. For 1206 we
approximate the likelihood as skewed log-normal with
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μD ¼ 7.8817, σD ¼ 0.2016, λD ¼ 3127.4, consistent with
Fig. 12 of Ref. [13]. These parameters are defined in Eq. (3)
of Ref. [17]. We verified that using the full likelihood [13]
leads to negligible changes in our results. The time delay
distances are weakly dependent on the assumed cosmology,
which enters into the line-of-sight lensing [14,54]. This was
investigated in Ref. [14], which found that the choice of
cosmological parameters impacted the line-of-sight lensing
level at the Oð0.5%Þ level for 0435. On average, lens lines
of sight are expected to be almost the same as random lines
through the Universe [55], so the effect of changing the
cosmology is expected to be small. However, lenses live in
locally overdense regions [56]. This effect is calibrated
using the Millennium Simulation [57]; changing the
cosmology used in this calibration could plausibly change
the inferred time delay distances by 1%, though it is worth
noting that a more direct calibration using weak lensing
[58] for 0435 is in agreement with the Millennium
Simulation method used in Ref. [14].
We also use constraints from the compound gravitational

lens SDSSJ0946þ 1006 [59]. Here the presence of two
sources s1 and s2 lensed by the same foreground mass
enables a precise constraint on the cosmological scaling
factor β ¼ ðdl;s1ds2=ds1dl;s2Þ [60]. This ratio has no
dependence on H0, but it is sensitive to spatial curvature.
We neglect the uncertainty of the redshift zs2 of the second
source, since for the fiducial cosmology it produces
changes in β that are less than half the measurement error,
and take the redshift to be at the peak of the photometric
redshift probability from Ref. [60], i.e., zs2 ¼ 2.3. This is at
the end of the range of the Pantheon SN dataset.
Data fit and results.—Fitting function for dðzÞ. We

obtain dðzÞ, H0, and ΩK0 model independently by fitting
the SN and time delay data simultaneously using a Markov
chain Monte Carlo sampler [61]. We model the function
dðzÞ with a polynomial. By fitting to mock Pantheon data
for different ΛCDM models (which include spatial curva-
ture) and performing an out-of-sample error analysis based

on real data, we have found that a fourth-order polynomial
is versatile enough to fit current data, while higher order
polynomials do not improve the goodness of fit, taking into
account the number of free parameters. We also find that the
typical offset of the mean from the real underlying value is
less than ∼10% of the statistical uncertainty. This agrees
with the analyses performed for Union2.1 [21] and JLA
[37] data. Splines, rational functions and Bézier curves were
also considered in Refs. [21,37], finding no improvement
over polynomials. As dð0Þ ¼ 0 and d0ð0Þ ¼ 1, the fourth
order polynomial has three free parameters. The absolute
magnitude M enters in the SN likelihood as a nuisance
parameter. In addition, dls given by Eq. (3) involves the
constant ΩK0 and the time delays involve H0, giving six
parameters in total. For comparison, we also fit the ΛCDM
model (with and without spatial curvature) to the data.
Priors. As flat priors, we take 0 < H0½km=s=Mpc� <

150, −2 < ΩK0 < 2, and −25 < M < −15. When fitting
polynomials, the order i coefficients ci are varied within
−10 < ci < 10. When fitting the ΛCDM model we
take 0 < ΩΛ0 < 1.5.
We also consider the following more informative priors.

For ΩK0, we use a prior obtained from the model-inde-
pendent value DAð0; 1090Þ ¼ 12.8� 0.07 Mpc from the
CMB [62] and the conservative bound H0 > 60 km=s=
Mpc, which combine to give dð1090Þ > 2.8. From Eq. (3)
this translates into ΩK0 > −0.1. If ΩK0 were more negative
(corresponding to the spatial curvature being more positive)
than indicated by this limit, the universe would be too small
to contain the last scattering surface. We also consider the
flat case ΩK0 ¼ 0. For H0, we consider the prior H0 ¼
74.03� 1.42 km=s=Mpc from local SNe [3]. When fitting
the ΛCDM model we always impose Ωm0 > 0 (this
restriction is relevant when including time delay data only).
Values of H0 and ΩK0. We marginalize over the three

polynomial coefficients (in the ΛCDM case, over ΩΛ0) and
the SN absolute magnitude to obtain the probability
distributions for H0 and ΩK0. The results are given in

TABLE I. Results for H0 and ΩK0 for the polynomial fit and the ΛCDM model with various choices of priors and
data. In the case of the prior ΩK0 > −0.1 we show the 95% range for ΩK0, as the distribution is far from Gaussian.

Model H0 [km/s/Mpc] ΔH0=H0 ΩK0 Restrictions

Polynomial 75.7þ4.5
−4.4 6% 0.12þ0.27

−0.25 None
Polynomial 76.8þ4.2

−3.8 5% ½−0.08; 0.73� ΩK0 > −0.1
Polynomial 74.2þ3.0

−2.9 4% � � � ΩK0 ¼ 0

Polynomial 74.2þ1.3
−1.3 2% 0.05þ0.18

−0.17 H0 ¼ 74.03� 1.42 km=s=Mpc
ΛCDM 72.9þ2.4

−2.4 3% 0.00þ0.16
−0.16 None

ΛCDM 73.4þ2.3
−2.4 3% ½−0.09; 0.36� ΩK0 > −0.1

ΛCDM 73.0þ2.1
−2.3 3% � � � ΩK0 ¼ 0

ΛCDM 73.8þ1.2
−1.2 2% 0.02þ0.15

−0.14 H0 ¼ 74.03� 1.42 km=s=Mpc
ΛCDM � � � � � � −0.06þ0.18

−0.17 SN data only
ΛCDM 73.5þ2.9

−2.9 4% 0.25þ0.32
−0.32 Time delay data only

ΛCDM 72.3þ2.3
−2.5 4% � � � Time delay data only, ΩK0 ¼ 0

PHYSICAL REVIEW LETTERS 123, 231101 (2019)

231101-3



Table I. Comparable values of maximum likelihood suggest
similar performance of the model-independent and ΛCDM
fits for all cases investigated here. The posteriors are close
to Gaussian except when we have the weak CMB prior
ΩK0 > −0.1, so for that case we show the 95% range rather
than the 68% error bars. Compared to the case when the
spatial curvature is free to vary, the prior ΩK0 > −0.1
reduces the error bars on H0 by 20%. Assuming spatial
flatness reduces the error bars by 30%. These determina-
tions of H0 have a precision of 6%, 5%, and 4%,
respectively. For comparison, the precision from local
SNe is 2% [3]. The limits on the spatial curvature are
−0.37 < ΩK0 < 0.70 (flat priors), −0.08 < ΩK0 < 0.73
(CMB prior ΩK0 > −0.1) and −0.28 < ΩK0 < 0.43 (local
SN prior onH0). There is no evidence for spatial curvature.
In the case with flat priors, these model-independent

error bars for both H0 and ΩK0 are larger than in the
ΛCDM case by a factor of 2. Even with the CMB prior on
ΩK0, the error bars on H0 grow by 70%. The reason is that
in the model-independent case, the SN data contain no
information about spatial curvature, unlike in the ΛCDM
case. With the prior on H0, the errors on ΩK0 grow by
only 10%.
In Fig. 1 we show the 2D marginalized contours on the

H0 −ΩK0 plane in the model-independent case with flat
priors. The CMB prior ΩK0 > −0.1 makes the probability
distribution of ΩK0 highly non-Gaussian due to the top-hat
cut, but otherwise the probability contours do not change
much. The 2D plot with the CMB prior would look like a
truncated version of the plot with the flat prior. As H0 and
ΩK0 are positively correlated, the prior on ΩK0 slightly
increases the value ofH0, but the shift is much smaller than
the error bars.
Computing the model-independent fits with only one

single-source lens system at a time provides an estimate of

the distance sum rule (4) for different ðzl; zsÞ pairs and
hence a consistency check for the FLRW metric. However,
we find that when we have both H0 and ΩK0 as free
parameters, the current data have no constraining power.
Comparing model-independent fits where we consider
either all single-source systems or the double-source
system alone still provides a consistency test of the
FLRW metric. Even taken together, the constraints on
spatial curvature from single-lens systems are very weak,
and we find no evidence against the FLRWmetric. This test
also shows that including the double lens system in
the analysis with all the systems is important, as it drives
the constraints on ΩK0, which in turn helps to improve the
determination of H0.
Concentrating on the ΛCDM model, the H0 error bars

fall by 17%when we add the SN data to the time delay data.
The SN data contain no information aboutH0, but they help
to constrain the vacuum energy and the spatial curvature.
The constraint on the spatial curvature comes mostly from
the SN data. Compared to the case with SN data only, the
errors on ΩK0 decrease only 9%, but compared to the case
with time delay data only, they drop by 50%. Although the
mean values of H0 determined model independently are
larger than in the ΛCDM case, the results are well
consistent within 1σ across choices of datasets and priors.
Conclusions.—Results and comparison to previous

work. The model-independent values for H0 from SN
and time delay data are in good agreement with the
determination from local SNe. The mean value of H0 is
considerably higher than the result from fitting the ΛCDM
model to the Planck CMB data, from 6.8 to 9.4 km=s=Mpc,
depending on the priors, but the difference is always less
than 3σ. These findings are consistent with previous model-
dependent determinations ofH0 from H0LiCOW data [13].
The SN distances and time delays involve only late

universe physics, whereas the CMB and BAO are depen-
dent on early universe physics. It has been suggested that
the discrepancy of H0 determined from local SNe or the
CMB might be due to early universe physics beyond the
ΛCDMmodel, in particular a smaller sound horizon [3,63].
This is supported by analyses combining BAO and other
data [64–70]. However, extrapolation of the Hubble
parameter HðzÞ determined from cosmic clocks down to
z ¼ 0 gives a small value of H0 more consistent with the
CMB data, though the difference does not seem to be
significant given current error bars [37,38,71–73] (see also
the combination of SN and cosmic clock data in [74], with
smaller errors). If the difference persists, this could rather
point to a distinction between determinations of H0 based
directly on the expansion rate (radial BAO mode and
cosmic clocks) and those derived from distances (SNe
and time delays), although it is not clear how the CMB
would fit this pattern.
The model-independent value for the spatial curvature is

determined with an error of ΔΩK0 ¼ 0.2…0.3, the precise
FIG. 1. The 68% and 95% confidence contours of H0 and ΩK0

in the polynomial case with flat priors.
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value depending on the priors. This is 2 orders of
magnitude worse than the model-dependent ΛCDM limit
from Planck CMB plus BAO data,ΩK0 ¼ 0.0007� 0.0019
[1], driven by the sensitivity of the angular diameter
distance to the spatial curvature at large redshifts.
However, we have made no assumptions about the matter
content or theory of gravity on cosmological scales, only
the validity of the FLRWmetric and geometrical optics. We
also tested the FLRW consistency condition from the
distance sum rule introduced in Ref. [21]. We find no
evidence of inconsistency of the FLRW metric, but the
constraining power of the current time delay data is
quite weak.
In the case when we do not impose informative priors,

the constraint on ΩK0 is better by a factor of 2 compared to
the value from strong lensing image deformation [21,22]
and roughly the same as the best determinations based on
comparing SN distances and cosmic clocks [29–33,37,38].
In the present case, systematics related to lens modeling are
better under control than in previous analyses.
Forecast. Let us estimate the expected improvement

from upcoming observations, roughly taking as the refer-
ence 10 years of LSST [75] observations. We consider 105

type Ia SNe logarithmically distributed over the Pantheon
redshift range and take fractional errors on the distance
modulus to be 0.5%, roughly the mean value in the JLA and
Pantheon datasets, as the SN data is already limited by
systematics. For the time delay data, we consider 400
systems [76] with both the lens and the source in the
Pantheon redshift range (the redshift distribution is deter-
mined by random draw from Ref. [77]), with 7% fractional
errors on the time-delay distance [78]. We assume a ΛCDM
cosmology with Ωm0 ¼ 0.30, ΩΛ0 ¼ 0.69, ΩK0 ¼ 0.01,
and H0 ¼ 70 km=s=Mpc. The larger dataset requires using
a fifth order polynomial to fit dðzÞ. Compared to the present
data, the error bars on bothH0 andΩK0 shrink by a factor of
8: H0 is determined with a precision of 0.9%, and the error
on the spatial curvature is ΔΩK0 ¼ 0.03. This is consistent,
within the different assumptions about the systems
observed, with previous forecasts based on a combination
of strong lensing image deformation and/or time delays
with SN data [21,23,24,27], as well using gravitational
waves and their electromagnetic counterparts to measure
both time delay and luminosity distance from the same
systems [25,26], or combining distances from gravitational
waves with cosmic clock data [79]. The large number of
lens systems will also allow us to fit the distance sum rule
(4) as a function of redshift, providing a stronger null test of
the FLRW metric.
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