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We show that the dynamics of a quantum impurity subject to a stochastic drive on one side and coupled
to a quantum critical system on the other display a universal behavior inherited from the quantum critical
scaling. Using boundary conformal field theory, we formulate a generic ansatz for the dynamical scaling
form of the typical Loschmidt echo and corroborate it with exact numerical calculations in the case of a spin
impurity driven by shot noise in a quantum Ising chain. We find that due to rare events the dynamics of the
mean echo can follow very different dynamical scaling than the typical echo for certain classes of drives.
Our results are insensitive to irrelevant perturbations of the bulk critical model and apply to all the
microscopic models in the same universality class.
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Universality lies at the core of our understanding of
equilibrium critical phenomena and is successfully cap-
tured by the renormalization group (RG) framework [1,2].
This program has been extended to nonequilibrium
classical systems, leading to the discovery of new dynami-
cal universality classes, including coarsening, reaction-
diffusion, and surface growth, among several others [3].
Recent developments in experiments with quantum many-
body systems call for a further extension of the program to
universal phenomena in quantum dynamics. For example,
systems of ultracold atoms and ions exhibit new dynamical
transitions [4–6], as well as new forms of dynamical scaling
[7–10]. Other classes of universal phenomena are seen in
driven open quantum systems. These include experiments
with nonequilibrium Bose-Einstein condensation of polar-
itons [11], dissipative phase transitions in cavity QED
circuits [12], and dynamical phase diagrams of condensates
trapped in optical cavities [13,14]. The common wisdom is
that driven-dissipative quantum systems exhibit emergent
classical dynamics because the coupling to the environment
washes out the delicate quantum coherences. For instance,
the occurrence of effective Langevin dynamics is common
to many quantum systems coupled to a bath, with examples
ranging from cold atoms to solid-state platforms [15–17].
In certain cases an intermediate regime of universal
quantum scaling can be identified [17,18], but it remains
an open question whether such quantum scaling can persist
to all scales in a driven-dissipative system.
In this Letter, we show that universal, inherently quan-

tum scaling can emerge in a conformally invariant system
driven out of equilibrium by a stochastic boundary field.
We consider microscopic models with a Hamiltonian of the
form

Ĥ ¼ ĤCFT þ hbðtÞÔb; ð1Þ

where ĤCFT is a one-dimensional bulk critical Hamiltonian
driven by a stochastic noise field hbðtÞ, weighted by a
relevant operator Ôb that lives on the boundary of the
system. Generically, ĤCFT can include irrelevant terms that
break the conformal symmetry, and only emergent con-
formal invariance in the infrared limit is required. Previous
work investigated the coupling of quantum systems to
different types of boundary drives, which lead to eventual
thermalization [17,19] or to nonuniversal relaxation [20]; in
contrast, we show that the dynamics induced by a con-
formal boundary drive are universal in a certain limit and
inherently quantum.
Before proceeding, we note that the problem of a

conformal field theory (CFT) driven by a periodic
(Floquet) boundary drive, considered by one of us [21],
does lead to universal relaxation. In this work we find that
universality persists even with a more generic stochastic
drive. Furthermore, we show that the behavior of the
Loschmidt echo is richer than in the periodically driven
case: one may have a different class of universal relaxation
when looking at the typical decay in a single realization of
the noise compared to the average echo over many noise
realizations. We corroborate these results with a direct

FIG. 1. Sketch of the class of systems under study in this work.
We consider a quantum critical spin chain (red spins) subjected to
a stochastic boundary drive (blue line).
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numerical calculation of a boundary driven transverse field
Ising model at its critical point.
Stochastically driven boundary in CFT.—For concrete-

ness, let us consider the Poisson process whereby the
boundary coupling hb stochastically jumps between two
values with some fixed probability p over an interval of
time δt, as illustrated schematically in Fig. 1. We note that
generically any type of sufficiently weak Markovian noise
will flow to Poisson noise under the RG, since events that
flip the boundary conditions are more relevant than those
that do not. To define our scaling variables, we have an
average time between flips T ¼ δt=p, with a Poisson
parameter of the shot noise after total time t of
λ ¼ pt=δt. Finally, the strength of the boundary field
hb ∼ jjhbðtÞjj sets the timescale tb ¼ h−νbb . Here, νb ¼
1=ð1 − ΔbÞ, with Δb the scaling dimension of the boundary
operator Ob. Application of the boundary CFT framework
is valid while the time between flips of boundary conditions
is much larger than the timescale tb; hence the latter serves
as a short time cutoff for our theory.
In what follows we focus on the Loschmidt echo, or

return-probability amplitude of the wave function,

LðtÞ ¼ jhψ0jψðtÞij2; ð2Þ

which in recent years has become an important quantity for
the study of universal properties of quantum many-body
systems [4,22–24] and can be measured via spectroscopic
techniques [25,26]. We consider the behavior of this
function in a typical realization of the stochastic drive
field as well as its expected average over all possible
realizations of the noise.
For each realization of the stochastic field hbðtÞ, LðtÞ can

be mapped to a partition function of a field theory, which
flows to a conformally invariant one in the scaling limit
where the time between flips is much larger than tb [27].
After a Wick rotation to imaginary time, the ground
state jψ0i is determined as the asymptotic evolution
limτ→∞e−τH0 jΩi, with jΩi a generic state and the operator
e−τH0 acting as a projector onto the ground state of H0 in
the limit τ → ∞. The boundary field flips between different
fixed values at random times; therefore, in any given
realization of the flips, the unitary time evolution operator
takes the form of a succession of imaginary time evolu-
tions, given by the Hamiltonian Eq. (1) with different fixed
boundary fields over the intervals between flips. Thus,
we have LðtÞ ∝ jhe−τ0H0 � � � e−τ2H2e−τ1H1e−τ0H0ij2, with
τ0 → ∞. Since the Hamiltonians Hi differ only by a
relevant boundary operator, we see that this maps exactly
onto a partition function in a two-dimensional conformal
field theory with mixed boundary conditions along the
imaginary time direction.
Now let us focus on the case of T ≫ tb, that is, the

average time between flips being much greater than the
timescale induced by the finite boundary field. This is to

ensure that the dynamics enters into a universal regime
where it can exhibit scaling. It is also important that we
impose δt≳ tb, since we only expect universal physics on
timescales longer than tb, and δt is the minimal spacing
between flips. These limits allow us to use the technique of
boundary-condition changing (BCC) operators, generic to
any two-dimensional conformal field theory, in which
sharp changes in the boundary condition may be replaced
inside all correlation functions by a particular type of
primary operator, often referred to as a boundary-condition
changing operator, inserted at the location of the change
[29–31]. We can therefore identify the Loschmidt echowith
a 2n-point function of primary operators ϕBCC. Analytically
continuing to real time, for any realization of the noise with
flips at times within some configuration S ¼ ftig, the
Loschmidt echo is then

LðtjftigÞ∼
����
�Y

ti∈S
ϕðiÞ
BCCðtiÞ

�����
2

: ð3Þ

For simplicity, let us now assume that we have a binary
drive between twoHamiltoniansH0 andH1, and hence only
one type of BCC operator ϕ per drive, though we note that
the argument follows for more complicated drives as well.
The specific examples that we consider below are boundary
drives in the critical Ising model. One class of drive in this
case is given by a boundary condition that jumps back and
forth between fixing the boundary spin up or down. We call
this the “fixed-fixed” drive, and it corresponds to insertions
of a fermion BCC operator with scaling dimension
ΔBCC ¼ 1=2. Another class of drive is given by a field that
jumps between a free and fixed (say, spin-up) boundary
condition. This drive corresponds to inserting a BCC
operator with a scaling dimension ΔBCC ¼ 1=16.
Typical echo.—We first calculate the typical echo

Ltyp ≡ elogL. We have

logL ¼
X∞
n¼0

PðnÞ 1

tn=n!

Z Y
i

dti log jCðt1;…; tnÞj2; ð4Þ

with Cðt1;…; tnÞ ¼ hϕðtnÞ…ϕðt1Þi the time-ordered cor-
relation function associated to n insertions of the BCC
operators, PðnÞ ¼ e−λλn=n! for a Poisson process, and we
note that in Eq. (4) only 2n-point functions enter the
expectation value. In fact, because of the ket in the echo,
both the one-flip process and the two-flip process are
controlled by the two-point function of BCCs, and similarly
for higher orders: the (2n − 1)- and 2n-flip processes are
controlled by the 2n-point function of BCCs. In taking the
average over the BCC insertions, we normalize byR Q

i dti ¼ tn=n!, where the n! factor is due to the time
ordering.
Now, for average flipping times T much larger than the

microscopic timescale tb (T ≫ tb), we can utilize the finite-
size scaling relation for primary operators at the bulk critical
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point [1], i.e., jCðt1;…; tnÞj2 ¼ ðT=tbÞ−4nΔBCCFðt1=T;…;
tn=TÞ, with F a universal scaling function. We therefore
expect the typical Loschmidt echo to be a universal scaling
functionLtyp ¼ LtypðT=tb; λÞ, and after explicit evaluation of
the sum we arrive at

logL ≃ −4ΔBCC

X∞
n¼1

½Pð2n − 1Þ þ Pð2nÞ�n logðT=tbÞ

¼ −2ΔBCCðλþ e−λ sinh λÞ logðT=tbÞ; ð5Þ

up to an additive universal average amplitude term logF that
may be neglected in the large T limit. We note that averaging
the logarithm is crucial, as the amplitude itself may in general
diverge. For large λ ≫ 1 we expand this result to obtain
logL≈λ≫1 −2ΔBCCλ logðT=tbÞ. Thus, we predict a universal
power-law form of the typical echo,

Ltyp ∼
λ≫1

�
T
tb

�
−2ΔBCCλ

; ð6Þ

which is in good agreement with the numerical data on the
Ising model shown in Fig. 2.
Mean echo.—Having argued for universal behavior of

the Loschmidt echo in a typical realization of the boundary
stochastic field, we now turn to the calculation of the mean
echo. In many cases, the mean echo should follow the same
universal scaling form as the typical echo. However, as we
argue below, for certain types of drives the mean and
typical echo may differ drastically.

The general form of the mean echo is given by

LðtÞ ¼
X
n

PðnÞ 1

tn=n!

Z Yn
k¼1

dtkjhϕðtnÞ…ϕðt1Þij2: ð7Þ

As noted previously, finite-size scaling implies that for
T ≫ tb, the n-point function should be a power law in T,
with an exponent determined by the scaling dimension of
the BCC operator. If ΔBCC ≥ 1=4, the power law can
produce a divergence in Eq. (7) when integrating over
the insertions of the BCCs. In the divergent case, rare
configurations where the insertions are all closely spaced
can give a dominant large contribution to the mean echo,
while they do not affect the typical echo because the
integral is over the logarithm.
Let us show this explicitly. Consider first the case

ΔBCC < 1=4, where the integrals are nondivergent. An
example is the fixed-free drive of the Ising model with
ΔBCC ¼ 1=16. Using the aforementioned finite-size scaling
relation, jCðt1;…; tnÞj2 ¼ ðT=tbÞ−4nΔBCCFðt1=T;…; tn=TÞ,
we haveLðtÞ¼P

nPðnÞðT=tbÞ−4nΔBCCF ðnÞ, whereF ðnÞ ¼R Q
dtiF ðt1=T;…; tn=TÞ is finite and independent of the

lower cutoff. This sumcanbe evaluatedusing the saddle point
approximation. One finds that, under the assumption
λ ≫ T=tb, the sum is dominated simply by the term
n� ¼ λ=2, recalling that the sum runs only over n even.
Therefore, one obtains LðtÞ ∼ e−λ=2F ðλ=2ÞðT=tbÞ−2ΔBCCλ.
This gives the same power-law dependence on T as the
typical echo, and hence the same scaling form.

FIG. 2. Left: The typical Loschmidt echo averaged over r ¼ 1000 realizations and for system sizes up to L ¼ 1000, for different
values of the boundary field hb and flipping probabilities p. The boundary field takes the values hb ¼ 0.1 (blue), 0.2 (orange),
0.3 (green), 0.4 (red), 0.5 (purple), 0.6 (pink), 0.7 (yellow), 0.8 (teal), and the probability p varies as marked in the legend. The Poisson
parameter λ takes values λ ≥ 10 throughout. The dashed lines are the prediction from boundary CFT [Eq. (6)]: for the fixed-fixed drive,
Δ ¼ 1=2, and for the free-fixed drive, Δ ¼ 1=16, with both showing excellent agreement. Right: The mean echo of the same data. For
the free-fixed drive, the mean and typical (black dashed lines) are very similar, but, strikingly, for the fixed-fixed drive the mean lies far
above the typical. This is due to rare events that dominate the average and give a renormalized scaling form (inset), where
α ¼ 0.71� 0.03, in good agreement with the estimate of α ¼ 0.75 in the main text.
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Now consider the divergent case ΔBCC ≥ 1=4, which is
realized, for example, by the fixed-fixed drive of the Ising
model (ΔBCC ¼ 1=2). In this case the integral over
F ðt1=T;…; tn=TÞ depends sensitively on the lower cutoff
δt=T. In order to estimate the scaling form, we replace the
averaged correlation function of BCCs by the largest
contribution in the limit δt → 0. Namely, we takeR Q

dxkF ðx1;…;xnÞ≈ðδt=TÞð1−4ΔBCCÞn=2, where δt1−4ΔBCC

is the divergent part of the two-point function. Substituting
this into the sum and taking δt ≈ tb gives L̄∼P

nPðnÞðn!=λnÞðT=tbÞ−4nΔBCCðtb=TÞðn=2Þð1−4ΔBCCÞ. Finally,
using the saddle point method with the sum dominated
by n� ¼ λ=2, we obtain the power law L̄ ∼ ðT=tbÞ−λðΔþ1=4Þ,
which is different than the power law governing the typical
echo. In particular, for the fixed-fixed Ising drive we
get L̄ ∼ ðT=tbÞ−3λ=4, which should be compared with
Ltyp ∼ ðT=tbÞ−λ.
Numerical results.—Having expounded our arguments

in generality for stochastically boundary-driven CFTs, let
us now validate them in an explicit model. Consider a one-
dimensional integrable quantum Ising chain in a transverse
field g tuned to criticality g → gc and driven by a stochastic
time-dependent noise coupled to the longitudinal spin field
at the boundary of the chain:

HðtÞ ¼ −J
XL
i¼1

ðσziσziþ1 þ gσxi Þ − hbðtÞσz1: ð8Þ

This Hamiltonian falls in the class given by Eq. (1), as its
low-energy excitations are described in equilibrium by the
Ising conformal field theory. We note that the critical Ising
model with a spatially disordered boundary field was
studied in Ref. [32].
After a Jordan-Wigner transformation [2], the model

Eq. (8) maps onto a chain of free Majorana fermions,

HðtÞ ¼ −J
X2L
n¼1

iηnηnþ1 − hbðtÞiγη1; ð9Þ

where η2i−1, and η2i are Majorana operators located on site i
of the Ising chain. Note that expressing the boundary
coupling to the edge operator σz1, which breaks the Ising
symmetry, requires an additional ancilla Majorana operator
γ that anticommutes with all fields and satisfies γ2 ¼ 1 [33].
The quadratic Hamiltonian Eq. (9) can be easily diagon-
alized numerically on large systems, and is thus an ideal
test bed for our earlier analytical arguments, which require
large system sizes, late times, and extensive disorder
averaging to numerically observe.
The system is endowed with three characteristic time-

scales: the inverse bandwidth, tJ ∼ 1=J, which is the
ultraviolet scale in the problem and controls the onset of
nonuniversal effects in dynamics, the timescale associated
to the boundary field tb ¼ h−2b , and the intrinsic time of a

stochastic Poisson flip δt. To ensure universal scaling, we
choose tJ ≪ tb, equivalent to the condition h2b ≪ J (the
boundary CFT limit). We note that if we were to integrate
over the stochastic boundary field from the start, we would
obtain an effective nonunitary evolution of a density matrix.
However, because the Poisson switching process cannot be
represented by a Gaussian white noise field, this is not in
general described by a quantum master equation in
Lindblad form [34,35]. Thus, the results presented here
are distinct from previous works on driven-dissipative
impurities, which used Lindblad equations to represent
the drive [17,20,36,37].
In our exact numerical calculations [38], we prepare the

ground state of the chain and then compute the time-
dependent Loschmidt echo for at least 1000 realizations of
the noise, on system sizes up to L ¼ 1000 and with J ¼ 2.
At any given time step, we randomly select whether or not
to flip the boundary field, corresponding to a Markovian
process. We then scan over many values of the boundary
field hb and the probability of flipping p for two different
types of drives: (1) a fixed-fixed drive, where the boundary
field takes values �hb (with the system prepared in the
ground state of −hb), and (2) a free-fixed drive, where the
boundary field takes values þhb and 0 (with the system in
the ground state of hb ¼ 0). Note that at very long times we
generally expect to see decay of the Loschmidt echo in any
finite system as it heats up under the action of the
incoherent drive hbðtÞ [41,42]. However, this occurs on
timescales of at least t� ∝ L [43,44], while in our simu-
lations we keep t < L=2 to reduce finite-size effects,
ensuring t≲ t�.
Figure 2 (left-hand panel) shows the decay of the typical

echo logL for different instances of the boundary field. The
universal collapse, the asymptotic power law, and the
specific exponents obtained for both types of drive
(fixed-fixed and free-fixed) are in excellent agreement with
the CFT predictions.
The right-hand panel of Fig. 2 shows the results for the

mean echo. As expected from the discussion of the previous
section, we see that the mean echo is identical to the typical
echo in the case of the free-fixed drive. This is because the
BCC operator has dimension ΔBCC ¼ 1=16 < 1=4 in this
case. Again, as expected, the mean and typical echoes differ
substantially in the case of the fixed-fixed drive, for which
the BCC operator ΔBCC ¼ 1=2 > 1=4. Furthermore, the
inset shows reasonable data collapse with the ansatz
L̄ ∼ CλðT=tbÞ−λα, where α ¼ 0.71� 0.03 and Cλ is a
constant prefactor dependent on the Poisson rate of flip-
ping. This should be compared to the analytical prediction
of α ¼ 0.75 obtained from our approximation above,
taking into account only the leading divergences in the
average over BCC insertions. Note, however, that there is a
larger statistical error in the average echo compared to the
typical one; therefore, the imperfect collapse could either
be due to statistical errors or from actual small corrections
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to the scaling exponent predicted from the boundary CFT
analysis above.
Discussion.—The scaling exponents that control the

dynamics of the Loschmidt echo in the critical transverse
field Ising model are those of the boundary Ising CFT; we
therefore expect our results to hold upon adding integra-
bility breaking perturbations V to the Hamiltonian in
Eq. (8), provided they are irrelevant operators under
renormalization group flow (for instance, V ¼
Γ
P

i σ
x
i σ

x
iþm, with m > 0). Furthermore, other critical

points with central charge c ¼ 1=2 will give the same
dynamical scaling exponents. While we have demonstrated
the scaling numerically for the Ising CFT, we emphasize
that the mechanism for universality outlined here is model
independent. Any boundary-driven CFT will display sim-
ilar universal collapse when driven by appropriate boun-
dary perturbations, with exponents that depend on the
particular form of the drive and driving operator. We
remark that the stochastic boundary Ising problem solved
here does not map onto a Kondo problem (as done in
Ref. [45]), since the average echo and the mean echo
studied in our work are not expressible as the statistical
partition function of a Coulomb gas.
An important general question is under what conditions

one should expect to find universal behavior of a driven
impurity. The problem of a quantum critical Ising chain
driven by noise acting on a local transverse spin operator
hxðtÞσx1 was studied by one of us in Ref. [20]. In that
study, crucially, the critical Ising chain was driven by a
marginal boundary operator σx1 rather than by a relevant
boundary operator σz1. Despite this seemingly small
difference, driving by a marginal spin operator yielded
a decaying Loschdmit echo, LðtÞ ∝ e−γttθ, with a non-
universal exponent θ. This is in sharp contrast to the
universal scaling collapse found in this work, and
suggests that the RG relevance of the driving operators
can play an important role in dictating the universality (or
lack thereof) of the dynamical response to dissipative
impurities. Further, whether other classes of noise, such
as 1=f noise or non-Markovian noise, can lead to novel
dynamical universal scaling is an intriguing open ques-
tion. Answering such questions would hopefully serve as
stepping stones toward the goal of a systematic categori-
zation of the universality classes of driven-dissipative
impurities.
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