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We study local search algorithms to solve instances of the random k-satisfiability problem, equivalent to
finding (if they exist) zero-energy ground states of statistical models with disorder on random hypergraphs.
It is well known that the best such algorithms are akin to nonequilibrium processes in a high-dimensional
space. In particular, algorithms known as focused, and which do not obey detailed balance, outperform
simulated annealing and related methods in the task of finding the solution to a complex satisfiability
problem, that is to find (exactly or approximately) the minimum in a complex energy landscape. A physical
question of interest is if the dynamics of these processes can be well predicted by the well-developed theory
of equilibrium Gibbs states. While it has been known empirically for some time that this is not the case, an
alternative systematic theory that does so has been lacking. In this Letter we introduce such a theory based
on the recently developed technique of cavity master equations and test it on the paradigmatic random
3-satisfiability problem. Our theory predicts the qualitative form of the phase boundary between the
satisfiable (SAT) and unsatisfiable (UNSAT) region of the phase diagram where the numerics of a focused
Metropolis search and cavity master equation cannot be distinguished.
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Introduction.—Nonequilibrium phenomena and the
structure of models with disorder have been two major
frontiers of statistical physics in the last half century.
Famous results include the discovery of a host of equalities
which generalize the second law [1–3], and the solution
of (equilibrium) spin glass models, first with all-to-all
couplings [4], and later with random-graph (dilute)
couplings [5].
An equilibrium distribution can be generated by a

dynamic rule where variables change state according to
local change of energy. This is the core of the Monte Carlo
procedure of scientific computing, and in particular of the
method of simulated annealing [6]. The physical principle
that underlies such methods is that a process obeying
detailed balance will eventually converge towards a Gibbs
distribution, although the time required may be exponential
in problem size for models in a spin glass phase.
The combination of nonequilibrium processes and com-

plicated high-dimensional energy functions has a natural
application to combinatorial optimization problems. As it
is now widely appreciated, these are equivalent to the
physical problem of finding ground states in statistical
mechanics models with disorder, an analogy which has
generated a large amount of literature [5]. Constraint
satisfaction is the subset where the energy function is
non-negative, and the problem is to find a zero-energy
ground state (if any exists).
Equivalently, methods to solve combinatorial optimiza-

tion problems that rely on local rules can be understood as

dynamical processes of high-dimensional spin systems.
The dynamical rules can, as for simulated annealing, obey
detailed balance, but do not have to. This Letter introduces
a new theory to describe nonequilibrium algorithms
which find solutions to the paradigmatic case random
3-satisfiability.
Random 3-satisfiability and the related random con-

straint satisfaction problem have been central benchmark
quantum annealing and quantum optimization algorithms
[7–12]. Comparisons have however so far exclusively been
to processes which like simulated annealing work close to
equilibrium, and which perform far less well than the out-
of-equilibrium processes studied here. Our Letter therefore
also injects into these discussions the best-performing
classical local algorithms within the purview of physical
analysis.
The random 3-satisfiability problem and local search.—

Boolean satisfiability is the problem to determine if a set of
logical clauses can be satisfied. Random K-satisfiability
(K-SAT) is the problem where all clauses have cardinality
K, and are picked at random. Although it is one of the basic
examples of a worst-case hard computational problem [13],
the empirical run time of solving a given instance of a
random 3-satisfiability problem varies greatly [14]. Very
underconstrained problems are in practice easy (SAT), the
difficult region is for problems that are on the verge of
being unsatisfiable (UNSAT) which for 3-satisfiability
(3-SAT), means a ratio of clauses to variables (M=N) of
about 4.27. Very overconstrained problems are again easy
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for complete algorithms (i.e., algorithms that either find a
solution or give a proof that there is no solution), but this
aspect will not be discussed further here.
In the run-up from underconstrained to critical 3-SAT

problems, different algorithms can be characterized where
they fail to work. Working here means finding a solution
with high probability, in time scaling as a small power in
the system size, and failing means everything else.
According to this criterion the best algorithm for random
K-SAT is “survey propagation” [15] which in its most
recent version is able to find solutions extremely close to
the SAT-UNSAT threshold [16]. Survey propagation is
however a quite complex algorithm tailored to random
constraint satisfaction problems, and is not competitive on
most real-world problems [17]. It is therefore of general
interest to step back and consider other simpler and more
general solution procedures, of which the first example is
“simulated annealing” [6], a workhorse of scientific com-
puting. The performance of simulated annealing at slow
enough cooling rate can be analyzed by spin glass
techniques [18] and is known to fail at some distance from
the SAT-UNSAT threshold.
The best local search algorithms that have been invented

for satisfiability are however not processes in detailed
balance. They all rely on “focusing,” meaning that only
variables that participate in some unsatisfied clause are
considered for update. A focused algorithm hence obeys
the dictum “if it works, don’t fix it.” For constraint
satisfiability, the most well-known algorithm in this class
is “walksat” [19] which is also competitive on many
real-world problems [17,20], and which works on random
3-satisfiability up to a clause density of about 4.2 [21].
Several other local search procedures have been shown to
work up to a similar threshold [21–27].
Here we will consider a focused Metropolis search

(FMS) [23,25]. This algorithm can be described very
simply as first making a focusing step and then a standard
Metropolis step, as in simulated annealing at one temper-
ature. For the best choice of temperature a FMS has been
empirically shown to work up to a clause density of about
4.23 [23]. With the notable exception of the average rate
equations of Refs. [20,28] that only work for special cases,
theory has been lacking for these important processes. That
is what we will provide here.
Cavity master equation applied to a random FMS for

3-SAT.—The cavity master equation is a closure of the
dynamic cavity equations. The dynamic cavity starts from
the joint probability distribution of all histories of a set of
dynamic variables interacting in a locally treelike (locally
loop-free) graph. It is then possible to write a self-consistent
equation for the probabilities of the history of single
variables when the history of one of their neighboring
variables is held fixed; one says that the first variable is in
the cavity of the second variable. These dynamic cavity
equations are formally belief propagation updates. As is,

they are of little practical value since the variable (the
history of one dynamic variable) is very high dimensional.
For dynamics in discrete time with synchronous updates,
closure assumptions have been explored for some time
[29–31].
The cavity master equation is appropriate for dynamics

of discrete variables in continuous time. In satisfiability
problems these variables naturally take values 1 (true) or
−1 (false), which we here call spins. The cavity master
equation takes as input the jump rates ri (for spin i)
defining the dynamics, and is for spins, interacting in
groups labeled by a; b; c;… (constraints, clauses) formu-
lated in terms of quantities pa→iðσanijσiÞ where σani are the
current values in group a except i [32]. These quantities
should be considered closures imposed on the correspond-
ing full cavity quantities μa→iðXanijXiÞ where Xani is the
whole history of all the spins in group a except i in the
cavity of i, and Xi the cavity history.
In practice, to describe a FMS on random K-SAT we

then have to solve the following set of coupled differential
equations:

_pðσanijσiÞ
¼−

X

j∈ani

X

fσbnjg
b∈∂jna

rjðþÞ
Y

b∈∂jna
pðσbnjjσjÞpðσanijσiÞ

þ
X

j∈ani

X

fσbnjg
b∈∂jna

rjð−Þ
Y

b∈∂jna
pðσbnjj−σjÞpðFj½σani�jσiÞ: ð1Þ

Fj in equation above is the flip operator acting on spin j
while the combination of several terms of the type
pðσanijσiÞ is characteristic of the cavity master equation
closure, and structurally analogous to the earlier described
case of the (ferromagnetic) p-spin model [32]. The term
rjð�Þ in Eq. (1) is the jump rate of spin j when it takes
value �σj. This quantity depends on the instantaneous
value of spin j and on the instantaneous values of all the
spins interacting with j, through all the clauses in which
spin j appears. To describe the dynamics of the FMS
algorithms one takes

ri ¼
Eiðσi; σ∂iÞ

KE
min ½e−βΔEðσi;σ∂iÞ; 1� ð2Þ

where the expression in brackets is the standard Metropolis
factor and Eiðσi; σ∂iÞ is the number of unsatisfied con-
straints of which spin i is a member. Each of these can be
written

Ea ¼
1

2K

Y

i∈a
ð1 − lai σiÞ ð3Þ

where the lai are quenched random variables taking values
�1. When σi equals lai , one says that variable i satisfies
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clause a, and the value of Ea is zero. If σi ≠ lai for all i ∈ ∂a
the value of Ea is one, and one says that clause a is
unsatisfied. K satisfiability is thus a mixture of p-spin
problems, where p ranges from 1 to K. In the focusing step
of a FMS all variables partaking in unsatisfied clauses are
picked with probability proportional to Eiðσi; σ∂iÞ, which
explains this factor in Eq. (2).
To model the dynamics of a FMS in overall algorithmic

time (wall-clock time), we have to further take into account
that the number of unsatisfied clauses changes. When this
becomes smaller the rate per unit time of a given unsatisfied
clause to be picked goes up. This is reflected by the
denominator KE in Eq. (2), where K is the number of
variables per clause (3 for 3-SAT) and E is the total number
of unsatisfied clauses. This globally defined time repar-
ametrization kicks in strongly when there are only a few
unsatisfied clauses left, and when the variables in these
clauses are probed more often. By a more efficient coding
one can bring down the number of sums in Eq. (1) from
2ðK−1Þc to 2c (c is the number of clauses per variable). This
coding is described in the Supplemental Material [33] (see
also references therein [34–36])

Results.—The problem is defined by the ratio between
the number of clauses (M) and the number of literals (N) of
some given instance of 3-SATwritten as α ¼ M=N, and by
η ¼ e−β as the noise parameter that enters into the rates of
Eq. (2). In order to understand the behavior of a FMS we
need to study its dependence on these two parameters.
For a given noise η, a FMS has been empirically shown

to have a zone, for α lower than some αcðηÞ, where it solves
3-SAT instances in times linear with system size N. For
α ≥ αc solutions are found in times that grow exponentially
withN, or solutions do not exist. This is shown in Fig. 1. As
can be seen in the top panel of this figure, for η ¼ 0.45, a
FMS is able to solve instances that have α ≤ 3.7, and seems
to fail otherwise. In the bottom panel, size effects are
represented. For α ¼ 3.6, FMS results seem to be almost
independent of N.
Then, by numerically integrating Eqs. (1) one can obtain

the behavior for the same values of the parameter η. Results
can be seen in Fig. 2. Although the transition α is not
identical to Fig. 1, the results of the CME are qualitatively
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FIG. 1. FMS results on 3-SAT instances. Both panels show the
number of unsatisfied clauses (system energy) as a function of
time, in log-log scale. (Top) Dependency on α of FMS behavior.
There is a transition between when a FMS works (finds a solution
in integration time considered), and when it does not. These
calculations were done with η ¼ 0.45 and system size N ¼ 105.
Averages over 500 different histories were made for each α.
(Bottom) The FMS’s dependency on N for η ¼ 0.45 and
α ¼ 3.6 < αc. Lines are a guide to the eyes.
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FIG. 2. CME results on 3-SAT instances. Both figures show the
number of unsatisfied clauses (system energy) as a function of
time, in log-log scale for different values of α. (Top) Comparison
between the CME (lines) and FMS (points) with η ¼ 0.4 and
system size N ¼ 2000. (Bottom) Comparison between the CME
(lines) and FMS (points) for η ¼ 0.65 and N ¼ 5000. There is a
transition between a phase in which solutions of the CME reaches
zero energy in finite time, and a phase where they do not. In the
region where frustration increases, i.e., for high α, the CME will
not reach zero energy even when the FMS typically is able to find
solutions. In this region, long range fluctuations in time and/or in
the graph are important.
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very similar. The differences are that the CME, as is natural
of the solution of a set of ordinary differential equations,
either converges to zero fairly rapidly, or does not converge
to zero. The zone where a FMS solves the problem by
fluctuations is hence not well described by the CME. The
predicted threshold of the CME (αc for given η) is thus
generally slightly smaller than the empirically determined
threshold of a FMS.
As illustration of the quality of our approximation on

Fig. 2 a comparison is made between the CME and FMS,
for η ¼ 0.65 and η ¼ 0.4 near the transition, and several
values of α, (see also the Supplemental Material [33] for
more plots). Figure 3 shows the phase diagrams of a FMS
and CME. For the FMS the phase boundary is obtained as
the last value of α where in 50% of the runs the number of
unsatisfied clauses goes to zero. We used 20 random graphs
and for each one 10 000 histories. For the CME the phase
boundary is similarly obtained for a given η, as the last
value of α where in at least half of the graphs (only one run
of course) the number of unsatisfied clauses goes to zero.
Close to the phase boundary integration, times are thus in
both cases long, and nontrivial correlations between nearby
variables have time to build up. If a variable is correlated
with nearby variables at one time it will be correlated with
its own state at a later time. Since the CME builds on a
closure assumption where temporal correlations are
ignored, it is not surprising that the two phase boundaries
do not coincide, i.e., that there is a gap. Far from the phase
transition, however, the approximation is much better. This
is more evident if it is compared with the results obtained
assuming, that the spins are independent (see the

Supplemental Material [33]). In this case, one can easily
see that the local version of the master equation fails
completely to describe the dynamical behavior of a FMS
while the CME follows very close the results of the
simulations.
The size and precise form of the gap is more difficult to

predict. As the correlations which the CME ignores contain
information that a FMS may explore, the phase boundary
for the CME should be shifted to the left relative to the
FMS. Below η ≤ 0.3, in the region of optimal performance
of the FMS, the gap however shrinks. We conjecture that
this better agreement may be the result of two competing
effects. One is the buildup of correlations, and the other is
that in this region, once the FMS hits a local minima, it gets
trapped, and its behavior is dominated by fluctuations.
The CME instead explores the whole configuration space,
neglects fluctuation effects, which would lead it to hit the
absorbing boundary of no unsatisfied clauses relatively
faster. In any case, it is important to note that neither the
FMS or CME appears to be limited by or sensitive to the
dynamical transition from spin glass theory which occurs
at αd ¼ 3.9.
Discussion.—The qualitative and quantitative descrip-

tion of the energy landscapes in combinatorial optimization
problems is one of the most important results of statistical
physics of disordered systems, with many applications in
many areas of science [4,5]. The quantitative prediction of
the exact threshold between a SAT and an UNSAT phase in
random satisfiability problems by a one-step replica sym-
metry breaking (1RSB) technique was a breakthrough [15],
which has been extended to many other paradigmatic
problems in computer science such as, e.g., graph coloring
[37] vertex covering [38], and the stochastic block
model [39].
Yet, these advances a priori describe statics, and not

dynamics. A long line of empirical investigations surveyed
in the introduction have shown that the phase diagram of
the nonequilibrium local search appears unrelated to
bounds derived from the complexity of (equilibrium) free
energy landscapes. A further and more recent discussion
that nonequilibrium may be “unreasonably effective” was
given recently in Ref. [40] and similarly in Ref. [41]. For
combinatorial optimization nonequilibrium may make
possible to achieve what has been posited to be impossible,
from equilibrium considerations. A full realization (and
exploitation) of these results has however been hampered
by a lack of systematic theory. This is what we have
furnished here, by adapting recent advances in the descrip-
tion of dynamics on locally treelike graphs to the under-
standing of the FMS.
Our theory for how the local search proceeds in time is

very accurate, in the parameter regime near the optimal
performance of the algorithm. We find that at large η’s our
algorithm described well the form of the phase boundary,
although it is shifted a constant to a somewhat smaller value
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FIG. 3. Comparison between the phase diagrams of a focused
Metropolis search (FMS) and cavity master equation (CME). The
phase boundary of a FMS was obtained by running 100 instances
of the problem at different α for a time 105 · N and determining at
which value of α half of them find a solution in the given time
(filled-in circles). Convergence is slower in the lower “descend-
ing” branch of a FMS. The phase diagram of the CME was found
by integrating the CME for 24 instances (thick-line circles) or at
least 4 instances (thin-line circles) of the problem at different α.
Results for each α were placed in log-log plots as the ones of
Fig. 2 and it was determined for which value of α half of them did
not converge to zero. We used N ¼ 5000 for η ≥ 0.65, N ¼ 2000
for 0.4 ≤ η ≤ 0.65, and N ¼ 500 for η < 0.4.
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of α (clause density). On the contrary, in the high density
(large α) regime, fluctuations dominate the behavior of
the FMS, and the CME keeps properly exploring the
energy landscape of the system. So, the gap between both
transitions vanishes. The last results suggest that there is
also room to use the CME as the basis to develop optimized
algorithms in the same spirit already tested in Ref. [32]. We
note that also in the simpler case of synchronously updated
spin systems (parallel updates) it was possible to further
improve on an analogous Markov approximation presented
in Ref. [31] by using the matrix product approximation of
quantummany-body theory [42]. It will be interesting to try
a similar approach for the continuous dynamics tested here.
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[4] M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory

and Beyond (World Scientific, Singapore, 1987).
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