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Self-duality is an algebraic structure of certain critical theories, which is not encoded in the scaling
dimensions and critical exponents. In this work, a universal thermodynamic signature of self-dual quantum
critical points (QCPs) is proposed. It is shown that the Grüneisen ratio at a self-dual QCP remains finite as
T → 0, which is in sharp contrast to its universal divergence at a generic QCP without self-duality,
ΓðT; gcÞ ∼ T−1=zν. This conclusion is drawn based on the hyperscaling theory near the QCP, and has far-
reaching implications for experiments and numerical simulations.
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Introduction.—Universality is the hallmark of critical
phenomena near continuous phase transitions, which is
highly cherished across the entire physics community. The
critical points fall into different universality classes accord-
ing to their critical exponents, which are defined by the
singular behaviors of various physical quantities near the
critical points. The general theory of critical phenomena
has been established since the mid-20th century based on
the scaling hypothesis and the renormalization group (RG)
theory [1]. The critical exponents can be calculated from
the scaling dimensions of fields in the critical theory (the
eigenvalues of the RG transformation of local operators). It
is one of the major theoretical challenges to calculate the
critical exponents of different universality classes.
Self-duality is a universal characteristics of certain

critical theories, which is not encoded in the critical
exponents. It dates back to the Kramers-Wannier duality
of the two-dimensional (2D) Ising model [2,3] and was
later constructed in a series of models with Abelian
symmetries [4–10]. As a concrete example, in the 1D
quantum Ising model with a transverse field (TFIM) [11],

HðgÞ ¼ −
X
i

σxi σ
x
iþ1 − g

X
i

σzi ; ð1Þ

the self-duality transformation is defined by [5]

Uσxi U
−1 ¼

Y
l≤i

σzl ; UσziU
−1 ¼ σxi σ

x
iþ1: ð2Þ

The Hamiltonian transforms as UHðgÞU−1 ¼ gHð1=gÞ.
The weak-field (g < 1) and the strong-field (g > 1) phases
are mapped into each other, leaving the quantum critical
point (QCP) gc ¼ 1 unchanged. The spin operator σxi is
mapped into the disordering operator

Q
l≤i σ

z
l that creates or

annihilates a domain wall, and vice versa. Therefore, the

self-duality is a Z2 symmetry acting on fields (operators) in
the critical theory at the QCP.
The self-duality provides profound insights into the

nature of phases and critical points, e.g., the nonperturba-
tive correspondence between correlation functions in differ-
ent phases [3]. However, the experimental evidence of self-
duality is rare. In the 2D superconductor-insulator tran-
sition [12–15] and the quantum Hall-insulator transition
[16,17], the postulated particle-vortex duality is supported
by the universal resistivity at the QCP [18,19] and the
reflection symmetry of nonlinear I − V curves [20].
A more universal signature of self-duality remains to be
unveiled.
In this work, I propose a universal thermodynamic

signature of self-dual QCPs. It is shown that the self-
duality implies a nondivergent Grüneisen ratio (GR) in the
quantum critical regime (QCR) (see Fig. 1), which is a
measurable hallmark of self-dual QCPs with far-reaching
implications for experiments.
The GR Γ is usually defined as the ratio between the

thermal expansion coefficient α and the molar specific
heat cp,

Γ ¼ α

cp
¼ ð1=VÞð∂V=∂TÞp

ðT=NÞð∂S=∂TÞp ; ð3Þ

in whichN is the mole number making the GR independent
of the system size. More generally, the pressure p and the
volume V in the definition is replaced by a generalized
force g (i.e., a tuning parameter in the Hamiltonian) and its
conjugate variable vg ¼ ∂fðT; gÞ=∂g, in which fðT; gÞ is
the free energy density. For example, near a QCP tuned by
the magnetic field B, the magnetic GR Γm is defined by
Γm ¼ ½ð∂M=∂TÞB=Tð∂S=∂TÞB�, in which M is the mag-
netization in the field direction.
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Near a generic QCP gc, based on the hyperscaling ansatz
of the singular part of the free energy,

fsðT; gÞ ∝ tðdþzÞ=zΦ
�

r

t1=zν

�
; ð4Þ

in which r ¼ ðg − gcÞ=gc and t ¼ T=T0 are reduced scaling
variables, and T0 is a nonuniversal characteristic temper-
ature scale. ΦðxÞ is the smooth hyperscaling function. The
GR ΓðT; gÞ is shown to diverge in a universal manner in the
QCR [21],

ΓðT; gÞ ∼ −GTT−1=zν; jrj=t1=zν ≪ 1; ð5Þ

and changes sign as g is tuned through the QCP at low
temperature [21,22],

ΓðT; gÞ ∼ 1

g − gc
; jrj=t1=zν ≫ 1; ð6Þ

in which z and ν are the dynamical and the correlation-
length critical exponents, respectively. The prefactor GT is
further discussed below. The universal behavior of ΓðT; gÞ
has been confirmed near the QCPs of heavy fermion
materials [23], and adopted as a standard thermodynamic
probe to quantum criticality [24,25].
Given the success of the above universal scaling form, it

is a surprise that ΓðT; gÞ does not diverge as T → 0 at the
QCP of the 1DTFIM. With the exact solution of the

1DTFIM, ΓðT; gÞ at the QCP is found to be precisely
1=2 at any temperature [26]. At first sight, this contradicts
the scaling form in Eq. (5). This is resolved by noting that
the prefactor GT is proportional to the derivative of the
hyperscaling function at the QCP [21],

GT ¼ ðdþ z − 1=νÞzΦ0ð0Þ
dðdþ zÞΦð0Þ

T1=zν
0

gc
; ð7Þ

and it is Φ0ð0Þ that vanishes in the 1DTFIM [22,26], which
was taken as a characteristic feature of the 1DTFIM [26].
The nondivergence of ΓðT; gÞ in the QCR was confirmed in
the magnetocaloric measurement of an Ising-like spin-1=2
antiferromagnetic chain material BaCo2V2O8 [27].
However, as I will show in this work, both the vanishing

Φ0ð0Þ and the nondivergent ΓðT; gÞ in the QCR turn out to
be a generic consequence of any self-dual QCPs, among
which the 1DTFIM is the simplest example [28]. Therefore,
the nondivergence of ΓðT; gÞ is a universal thermodynamic
signature of self-duality. I will first give a simple and
rigorous proof for QCPs with exact self-duality, and make a
heuristic generalization based on the hyperscaling ansatz
and the formal RG theory, and then present a few examples.
Finally, I will discuss its implications to experiments and
possible extensions.
QCP with exact self-duality.—Let us first consider a

generic QCP with an exact self-duality. Assume a
Hamiltonian parametrized by g with a QCP at gc ¼ 1,
HðgÞ ¼ H1 þ gH2. A unitary or an antiunitary self-duality
transformation U satisfies

UH1U−1 ¼ H2; UH2U−1 ¼ H1: ð8Þ

The Hamiltonian at the QCP is invariant under the self-
duality transformation, UHðgcÞU−1 ¼ HðgcÞ. This defini-
tion is not as restricted as it appears. The 1DTFIM and the
1D quantum clock model are two examples among a broad
range of exactly self-dual models with Abelian sym-
metries [9].
Taking the thermodynamic expectation values at a finite

temperature T at the QCP, the self-duality symmetry
guarantees that

hH1iT ¼ hUH1U−1iT ¼ hH2iT ¼ 1

2
hHðgcÞiT: ð9Þ

Therefore, the GR at the QCP

ΓðT; gcÞ ¼
∂hH2iT=∂T

∂hHðgcÞiT=∂T ¼ 1

2
; ð10Þ

which is independent of the temperature. Thereby this is a
direct consequence of the exact self-duality without refer-
ring to any specific properties of the model.

FIG. 1. The link between the critical theory and critical
phenomena. In the general theory of critical phenomena, the
universality class is defined based on the critical exponents,
which are determined by the scaling dimensions of fields
(operators) under the scale (or conformal) transformation. On
the other hand, self-duality is an algebraic structure of certain
critical theories, which is not encoded in the scaling dimensions.
As shown in this work, the self-duality implies that the derivative
of the hyperscaling function vanishes at the QCP, and the
Grüneisen ratio does not diverge as T → 0. This provides a
universal thermodynamic signature of self-dual QCPs.
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Self-duality and hyperscaling.—Let us give the follow-
ing heuristic definition of self-duality for more generic
QCPs. Suppose that the QCP is controlled by a fixed point
H� in the space of all possible couplings (theory space), and
the tuning parameter g − gc couples to the relevant operator
R, which has an RG eigenvalue y ¼ 1=ν > 0. The irrel-
evant operators are denoted by In with RG eigenvalues
yn < 0. The self-duality U is a unitary or an antiunitary
transformation on the operators,

UH�U−1 ¼ H� þ
X
n

anIn; ð11aÞ

URU−1 ¼ −Rþ
X
n

bnIn; ð11bÞ

UInU−1 ¼
X
m

unmIm: ð11cÞ

In other words, the self-duality is a Z2 transformation in
the theory space up to irrelevant operators. It may also act
nontrivially on other operators that do not directly appear in
the Hamiltonian; e.g., it interchanges the spin and the
disordering operators in the 1DTFIM.
Expand the Hamiltonian around the fixed point,

HðgÞ ¼ H� þ δgRþ
X
n

αnðgÞIn; ð12Þ

where δg ¼ g − gc. Based on the formal RG theory, the
singular part of the free energy density can be expressed by
[1]

fs(T; g; fαnðgÞg) ¼ tðdþzÞ=zΦ
�

r

t1=zν
; fαnðgÞtjynj=zg

�

¼ tðdþzÞ=zΦ
�

r

t1=zν

�
þ…; ð13Þ

in which ΦðxÞ is the universal hyperscaling function
appearing in Eq. (4), and the ellipsis denotes the subleading
corrections contributed by the irrelevant terms. The
dynamical exponent z enters because the temperature T
is also rescaled in the RG transformation.
The self-duality then implies that

e−NfðT;gÞ=T ¼ Tre−HðgÞ=T

¼ TrðUe−HðgÞ=TU−1Þ
¼ Tre−ðH

�−δgRþ
P

n
βnðgÞInÞ=T; ð14Þ

in which βnðgÞ ¼ an þ δgbn þ
P

m αmðgÞumn. Therefore,
the singular part of the free energy satisfies

fsðT; gc þ δg; fαnðgÞgÞ ¼ fsðT; gc − δg; fβnðgÞgÞ; ð15Þ

which implies

Φ
�

r

t1=zν

�
¼ Φ

�
−

r

t1=zν

�
: ð16Þ

Therefore, the self-duality of the QCP implies Φ0ð0Þ ¼ 0
and thereby the saturation of ΓðT; gÞ as the temperature
decreases in the QCR, where jrj=t1=zν ≪ 1, and particularly
its nondivergence at the QCP.
Example 1: Ising domain wall model.—Consider the

following 1D spin-1=2 model:

HðgÞ ¼ −
X
i

σziσ
x
iþ1σ

z
iþ2 − g

X
i

σyi : ð17Þ

It hosts an exact self-duality [29],

U ¼
Y
i

σxi
Y
i

e−ðiπ=4Þðσ
z
i σ

z
iþ1

−σzi−1Þ; ð18Þ

which satisfies UHðgÞU−1 ¼ gHð1=gÞ. There is a self-dual
QCP at gc ¼ 1. It was derived as the effective model of the
domain wall between the toric code and the double semion
topological order states, and dubbed the Ising domain wall
model (IDWM) [29]. The self-duality of the IDWM is a
local transformation; thus it is exact even on a finite-size
lattice with periodic boundary condition (p.b.c.), which is
in sharp contrast to the nonlocal self-duality of the 1DTFIM
and related models.
The IDWM is numerically diagonalized on finite lattices

with p.b.c. The GR near the QCP is shown in Fig. 2. While
the sign change of ΓðT; gÞ at low temperature near the QCP
is consistent with the general scaling form in Eq. (6), the
curves intersect precisely at the QCP, and ΓðT; gcÞ ¼ 1=2
for all temperatures (Fig. 2, right panel). As shown above,

FIG. 2. Left: GR of the Ising domain wall model near its QCP
gc ¼ 1 on finite-size lattices with periodic boundary condition.
The temperature T ¼ 1=L. Right: ΓðT; gcÞ ¼ 1=2 for any lattice
sizes and temperature.
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this is a thermodynamic signature of the exactly self-
dual QCP.
Example 2: 2D topological transition.—The following

lattice model of 2D free fermions [30] describes the
topological quantum phase transition (QPT) from a quan-
tum anomalous Hall insulator (m < 0) to a normal insulator
(m > 0),

H ¼
X
k

ψ†
khðkÞψk; ψk ¼

�
ck
vk

�
; ð19aÞ

hðkÞ ¼
�
ϵcðkÞ þm ΔðkÞ
ΔðkÞ� ϵvðkÞ −m

�
; ð19bÞ

in which ϵcðkÞ ¼ −2tcðcos kx þ cos ky − 2Þ, ϵvðkÞ ¼
2tvðcos kx þ cos ky − 2Þ, and ΔðkÞ ¼ Δðsin kx − i sin kyÞ.
Close to the QCP at m ¼ 0, the low-energy physics is
captured by the massive Dirac Hamiltonian,

hðkÞ ≃ Δðkxσx þ kyσyÞ þmσz: ð20Þ

The antiunitary transformationUψkU−1 ¼ Kσxψk (K is the
complex conjugate) changes the sign of m and, thus,
interchanges the two phases and leaves the QCP unchanged
up to irrelevant terms. Therefore, it serves as a self-duality
of this topological QPT.
The GR ΓðT;mÞ near the QCP is shown in Fig. 3. At low

temperature, its sign change near the QCP is again captured
by the general scaling form, Eq. (6). However, at the QCP,
ΓðT; 0Þ saturates as T → 0 (Fig. 3, right panel), exhibiting
the thermodynamic signature of self-duality.
Example 3: QCP without self-duality.—In order to

highlight the peculiarity of the self-dual QCPs studied
above, let us contrast them with a QCP without self-duality.
The chemical potential-tuned metal-insulator transition
(MIT) in 1D is described by

H ¼
X
k

ξkc
†
kck; ξk ¼ −2 cos k − μ: ð21Þ

The system is metallic with a partially filled band for
jμj < 2, and insulating with an empty conduction band for
μ < −2. The MIT takes place at μc ¼ −2. The critical
exponents z ¼ 2 and ν ¼ 1=2 can be extracted from the
single-particle Green’s function near the QCP. This QCP
cannot be self-dual because the energy spectra are gapless
and gapped in the two phases, respectively; thus they
cannot be mapped into each other by a unitary or an
antiunitary transformation.
The GR near the QCP is shown in Fig. 4. In the low-

temperature regime, ΓðT; μÞ changes sign near the QCP as
the scaling form of Eq. (6) like other QCPs. However, at the
QCP, ΓðT; μcÞ also diverges as T → 0, which is in sharp
contrast to the self-dual QCPs. The power-law fitting
(Fig. 4, right panel) yields ΓðT; μcÞ ∼ T−1, fully consistent
with the general scaling form in Eq. (5).
Discussion: Nondivergent GR implies self-duality.—Is

self-duality a necessary condition for the nondivergence of
GR at the QCP? I will argue that this is true by explicitly
constructing a unitary self-duality transformation near
the QCP.
Suppose that the QCP is perturbed by a relevant operator

R, HðgÞ ¼ HðgcÞ þ δgR, and the GR ΓðT; gcÞ is finite as
T → 0 and can be expanded as ΓðT; gcÞ ¼ Γð0; gcÞþP∞

n¼1ð1=n!ÞΓðnÞð0; gcÞTn. In the eigenstate basis of HðgcÞ,

HðgcÞ ¼
Z

∞

0

dϵDðϵ; gcÞϵjϵðgcÞihϵðgcÞj; ð22Þ

in which Dðϵ; gcÞ is the density of states of HðgcÞ and
jϵðgcÞi is the eigenstate of HðgcÞ with energy ϵ [31]. The
deformed Hamiltonian H̃ðgÞ ¼ HðgÞ − δg½Γð0; gcÞHðgcÞþ
δH� satisfies

FIG. 4. Left: GR near the 1D chemical potential-tuned metal-
insulator transition described by Eq. (21). Right: at the QCP,
ΓðT; μcÞ diverges as T → 0. The power-law fitting yields
ΓðT; μcÞ ¼ −0.067þ 0.527=T (dashed line).

FIG. 3. Left: GR near the 2D topological quantum phase
transition described by Eq. (19). Parameters: tc ¼ 1.2, tv ¼ 0.8,
and Δ ¼ 0.5. Right: at the QCP, ΓðT; 0Þ saturates as T → 0.
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Γ̃ðT; gcÞ ¼
∂hR − Γð0; gcÞHðgcÞ − δHi=∂T

∂hHðgcÞi=∂T ¼ 0 ð23Þ

at any T, in which

δH ¼
Z

∞

0

dϵδDðϵÞϵjϵðgcÞihϵðgcÞj; ð24Þ

δDðϵÞ ¼
X∞
n¼1

ΓðnÞð0; gcÞ
n!ðn − 1Þ!ϵ2

Z
ϵ

0

dωðϵ − ωÞn−1Dðω; gcÞω2:

ð25Þ

Furthermore, given that HðgcÞ is strictly marginal at the
QCP, δH is irrelevant from dimensional analysis.
The vanishing of Γ̃ðT; gcÞ at any T implies that the de-

formed entropy S̃ðT; gÞ of H̃ðgÞ satisfies ∂S̃ðT; gcÞ=∂g ¼ 0

at any T; thus the deformed density of states D̃ðϵ; gÞ
satisfies ∂D̃ðϵ; gcÞ=∂g ¼ 0 for any ϵ. Therefore,

D̃ðϵ; gc þ δgÞ ¼ D̃ðϵ; gc − δgÞ þOðδg3Þ: ð26Þ

In other words, there is a one-to-one correspondence
between the spectra of H̃ðgc þ δgÞ and H̃ðgc − δgÞ up to
vanishingly small energy level shift.
Denoting the eigenstates of H̃ðgc � δgÞ by jϵ̃ðgc � δgÞi,

a unitary transformation UðδgÞ can be constructed for
each δg,

UðδgÞjϵ̃ðgc þ δgÞi ¼ jϵ̃ðgc − δgÞi; ð27Þ

under which H̃ðgÞ transforms as

UðδgÞH̃ðgc þ δgÞUðδgÞ−1 ¼ H̃ðgc − δgÞ þOðδg3Þ: ð28Þ

UðδgÞ converges to a unitary transformation U as δg → 0,
which satisfies

UHðgcÞU−1 ¼ HðgcÞ þOðδg2Þ; ð29Þ

UðR − δHÞU−1 ¼ −Rþ 2Γð0; gcÞHðgcÞ þ δH þOðδg2Þ;
ð30Þ

thus it is not an identity operator. The original Hamiltonian
HðgÞ transforms as

UHðgc þ δgÞU−1 ≃ ð1þ 2Γð0; gcÞδgÞHðgc − δgÞ; ð31Þ

where irrelevant operators are omitted. This has a similar
form as the exact self-duality up to numerical prefactors
and irrelevant operators, both of which only modify the
nonuniversal behavior of the GR quantitatively. Therefore,
U is the desired unitary self-duality transformation near
the QCP.

Summary and outlook.—In summary, it is shown that the
GR does not diverge as T → 0 in the QCR of a self-dual
QCP. This is in sharp contrast to its universally diverging
form at a generic QCP without self-duality. Therefore, it
serves as a universal thermodynamic signature of self-
dual QCPs.
The self-duality is an algebraic structure of the critical

theory, and is not encoded in the scaling dimensions and the
critical exponents. Indeed, self-duality has been con-
structed in various critical points with distinct critical
exponents. In this work, it is shown to be reflected in
the hyperscaling function ΦðxÞ: Φ0ð0Þ ¼ 0 at a self-dual
QCP. This inspires us to further unveil the rich information
encoded in the hyperscaling functions with particular
attention on the algebraic structure of the critical theory
(see Fig. 1).
This work has far-reaching implications for experiments.

Let us first note that the nondivergent GR was observed in
the magnetocaloric measurements on BaCo2V2O8, but
taken as a special feature of the 1DTFIM [27]. As shown
in this work, this is indeed the first thermodynamic
evidence of a self-dual QCP. It is greatly desirable to
perform similar magnetocaloric measurements on the 2D
superconductor-insulator transition and the quantum Hall-
insulator transition, both of which have been postulated as
self-dual QCPs [14,15,17].
Moreover, this thermodynamic signature may be adopted

in numerical simulations to test the postulated self-dual
QCPs. By comparing the low-temperature behavior of the
GR at the QCP with the general diverging form, ΓðT; gcÞ ∼
T−1=zν (z and ν can be extracted from other physical
quantities), one may provide a thermodynamic evidence
to or falsify the postulated self-duality. In order to put this
into work, it is necessary to reach a better understanding of
the finite-size and the boundary effects on QCPs with
nonlocal self-duality. This will be presented in a separate
work [32].
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