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Stabilizer code quantum Hamiltonians have been introduced with the intention of physically realizing a
quantum memory because of their resilience to decoherence. In order to analyze their finite temperature
thermodynamics, we show how to generically solve their partition function using duality techniques. By
unveiling each model’s universality class and effective dimension, insights may be gained on their finite
temperature dynamics and robustness. Our technique is demonstrated in particular on the 4D toric code and
Haah’s code; we find that the former falls into the 4D Ising universality class, whereas Haah’s code exhibits
dimensional reduction and falls into the 1D Ising universality class.
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The stabilizer formalism is a powerful mathematical
framework for designing quantum error correcting codes
[1–6]. Kitaev proposed to turn a stabilizer code into an
interacting many-body system by associating a coding
space to the ground state subspace of a stabilizer code
Hamiltonian, a linear combination of elements of the
stabilizer group [7,8]. Stabilizer code Hamiltonians display
a gapped spectrum with a topologically quantum ordered
ground manifold and where errors, typified by finite energy
excitations, become energetically unfavorable at zero tem-
perature. These systems are natural candidates for physical
realization of a robust quantum memory, a q RAM or q hard
drive, because of their inherent resilience to decoherence.
Since Kitaev’s original proposal, several stabilizer code
models have been advanced in various spatial dimensions
D, including the most recent fracton models [9–14].
It was emphasized long ago that the effect of temperature

on these memories cannot be ignored [15–17]. Finite
temperature decoherence times may be affected by effective
dimensional reduction [15,18,19]. Specifically, the spectral
degeneracy of stabilizer code models is associated with
symmetries that may involve a macroscopic fraction of
degrees of freedom, the so-called d-dimensional gaugelike
symmetries [20,21], 0 ≤ d ≤ D, later on dubbed “subsys-
tem” symmetries [22–25]. Duality transformations [26–28]
may unveil the lower dimensional classical theory iso-
morphic to the stabilizer code model. Such dual theories
exhibit nonanalyticities (and critical exponents associated
with continuous transitions [29]) of identical character,
and therefore belong to the same universality class.
Understanding the universality classes and dynamics of
stabilizer models may aid in the design of robust quantum
memories.
The primary goal of this Letter is to show how duality

techniques can be utilized to exactly determine the partition
function of stabilizer code Hamiltonians. In particular, we

demonstrate how the stabilizer algebra encodes any non-
analyticities (or lack thereof) in the thermodynamic free
energy of the corresponding stabilizer Hamiltonian, via the
scaling of constraints on the stabilizer algebra with system
size. The Abelian nature of the stabilizer group allows for a
particularly simple analysis: while the studied models are in
principle constructed using a large number of entangled
quantum spins, the resulting algebra will be shown to factor
into independent Ising algebras. Consequently, the partition
function of any CSS stabilizer code Hamiltonian [30]
may be easily analyzed using various duality techniques.
The effective dimensionality of the resulting classical
models vary depending on the constraints. We find that
D ¼ 2 or 3 dimensional stabilizer models are often dual to
classical Ising chains, implying the absence of phase
transitions in many stabilizer models (see Table I).
In this Letter, we analyze the 4D toric code [8] and

Haah’s 3D cubic code [13,14,35]. These models represent
two extremes of the dimensional reduction paradigm:
we will show that the 4D toric code (4DTC) features no
dimensional reduction and belongs to the 4D Ising uni-
versality class. By contrast, typical odd lattice size rendi-
tions of Haah’s 3D cubic code lie in the 1D Ising
universality class. The 4DTC therefore exhibits a finite
temperature phase transition with critical exponents given
exactly by those of mean field theory, while Haah’s cubic
code may be unstable to thermal fluctuations (a phenome-
non known as thermal fragility [15]) and exhibit no finite
temperature transitions.
Methodology.—We will investigate thermal properties

of the above two stabilizer Hamiltonians by identifying
their classical Ising duals. The models are defined on D-
dimensional lattices Λ ¼ ZD

L of length L in each direction
with vertices v ¼ ðx; y; z;…Þ ∈ Λ. The lattices Λ are
endowed with periodic boundary conditions, although
any local finite temperature properties should not depend
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on the boundary conditions in the thermodynamic limit. We
associate with the lattice N qubits, each with a local
complex Hilbert space Hn ¼ C2; the global Hilbert space
H ¼⊗n Hn is of dimension 2N . Each qubit belongs to a
unit k cell of the lattice: k ¼ 0, 1, and 2 represent qubits on
the vertices, links, and plaquettes of the lattice, respectively.
Our arguments are easily generalized to p qudits and Uð1Þ
models [34,38].
Next, we define the operators Ar and Bs as:

Ar ≡
Y

n∈Nr

σxn; 1 ≤ r ≤ R;

Bs ≡
Y

n∈Ns

σzn; 1 ≤ s ≤ S; ð1Þ

where Nr and Ns are indexing sets used to generate R
operators Ar and S operators Bs, respectively. We further
require that each Ar and Bs commute. The Hamiltonian for
this generic stabilizer model reads

H ¼ −a
XR

r¼1

Ar − b
XS

s¼1

Bs; ð2Þ

with coupling constants a; b > 0. All operators in (2)
commute and square to the identity 1 on H. The partition
function is then given by the following high-temperature
[β ¼ 1=ðkBTÞ] series expansion:

Z ¼ Tre−βH ¼ Tr

�YR

r¼1

ð1Ca þ ArSaÞ
YS

s¼1

ð1Cb þ BsSbÞ
�

¼ 2NCR
aCS

bTaTb: ð3Þ

Here, Ca ≡ coshðβaÞ and Sa ≡ sinhðβaÞ, with Cb and Sb
similarly defined. In the above, Ta (and analogously Tb) are
given by

YR

r¼1

½1þ ArTa� ¼ Ta1þ t:t:; with Ta ¼
X

P∈A
TjPj
a ; ð4Þ

with “t:t:” denoting traceless terms and Ta ≡ tanhðβaÞ [and
Tb ≡ tanhðβbÞ]. P ∈ A (B) denotes operators Ar (Bs)
multiplying to 1,

Y

l∈P
Al ¼ 1 ∀ P ∈ A: ð5Þ

Each P corresponds to a constraint on the stabilizer
algebra. The only terms contributing to the trace in (3)
are those proportional to the identity (2N ¼ Tr½1�). The
traceless terms (t:t:) in (4) and those corresponding to Tb
cannot combine to yield the identity—by construction
in (1), there are no nontrivial constraints between Ar and
Bs operators. We have thus reduced the problem of solving
each model’s partition function to identifying which and
how many constraints exist among Ar or Bs operators
separately. From the partition function, we may then
compute the thermodynamic free energy density,

fðβÞ ¼ lim
L→∞

−
1

βLD logZ: ð6Þ

This means of describing the thermodynamics of spin
models is particularly effective for stabilizer Hamiltonians.
The algebra of a stabilizer Hamiltonian has three important
properties: (i) each element of the stabilizer commutes
with one another, (ii) each element of the stabilizer is
usually composed of either entirely σx or σz operators

TABLE I. Universality classes of stabilizer code Hamiltonians. D is the spatial dimension of the lattice model. d is the dimension of
the gaugelike symmetries. Dualities are defined as equivalence relations between partition functions: the 3DTC, for example, has a
partition function proportional to the product of a 1D Ising and a 3D Ising partition function. While Chamon’s XXYYZZ model is not a
stabilizer code, it can also be shown by duality to exhibit dimensional reduction [19]. Additionally, while all listed models above are
constructed using Pauli operators, very similar results may be obtained for non-Pauli models, such as those with Zp clock operators or
Uð1Þ operators. *: While the X-cube model’s universality class does not depend on any choice of boundary conditions, the particular
duality chosen holds for the case of cylindrical boundary conditions. **: The duality given below for Haah’s code holds explicitly for
those values of L for which the ground state degeneracy (GSD) is 4.

Model D d Dual model Universality Class

2D toric code [7,15] 2 1 Two decoupled 1D Ising chains 1D Ising
2D honeycomb toric code [19,31] 2 1 Two decoupled 1D Ising chains 1D Ising
Color codes [19,32] 2 1 Two decoupled 1D Ising chains 1D Ising
3D toric code [15,33] 3 0, 1 Decoupled 1D Ising and 3D Ising models 3D Ising
X-cube* [9,34] 3 1, 2 Decoupled L 1D Ising and L − 1 1D Ising gauge 1D Ising
Haah’s code** [13,14,35] 3 2 Two decoupled 1D Ising chains 1D Ising
4D toric code [8,36] 4 2 Two decoupled 4D Ising models 4D Ising
Chamon’s XXYYZZ [19,28,37] 3 1 Four decoupled 1D Ising chains 1D Ising
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(these stabilizer codes are known as CSS codes [30], and
most stabilizer code Hamiltonians fall into this category),
and (iii) each element has eigenvalues�1. This implies that
the stabilizer algebras we investigate factor into two
classical Ising algebras. As a result, these stabilizer
Hamiltonians are dual [26–28] to classical Ising-like
Hamiltonians using bond-algebraic dualities [28].
4D toric code.—As befits its name, the 4DTC [8,39] is

defined on a D ¼ 4 dimensional lattice. Qubits are asso-
ciated with all (6L4) plaquettes p. For each link l, the
operator Al is defined by

Al ≡
Y

l∈∂p
σxp; ð7Þ

where the above product is over the six plaquettes p whose
boundary ∂p contains the link l. The operator Bc is defined
for each three-dimensional cube as

Bc ≡
Y

p∈∂c
σzp: ð8Þ

The above product is over the six plaquettes contained
in the cube c’s boundary. The Hamiltonian H4DTC and
partition function Z4DTC are as defined in (2) and (3),
respectively, and it is trivially verified that each Al and Bc
commute. For an analysis of its gaugelike symmetries
see [40].
We now show that the 4DTC is dual to two copies of the

4D nearest neighbor Ising (4DI) model defined by

H4DI ¼ −J
X

hv;v0i
svsv0 ; ð9Þ

in the sense that the thermodynamic free energy density can
be trivially written in terms of the 4D Ising model’s free
energy. In (9), sv is a classical spin variable at each vertex
v ∈ Λ and the sum is over all nearest neighbor pairs v, v0 in
Λ. We express the partition function of this model via a low
temperature series expansion. Starting from the ground
state of sv ¼ þ1 for all v, we consider excited states and
expand in the number of higher energy “broken bonds”; a
“broken bond” corresponds to svsv0 ¼ −1 for a nearest
neighbor pair v, v0. The partition function is then given by

Z4DI ¼ 2e4L
4βJ

X

C⊂Λ
e−2βJΔC : ð10Þ

Each C represents a set of flipped spins from the chosen
ground state. We demand that jCj ≤ L4=2, noting that each
configuration C has a global spin-flip “symmetry partner”
ΛnC with the same bond structure as C. The ground state
energy is −4L4J, and ΔC is the number of “broken bonds”
in configuration C with 2J being the energy penalty for
“breaking a bond.”

We begin investigating Ta by noting the constraint

Y

v∈∂l
Al ¼ 1: ð11Þ

The above product is over the eight links containing the
vertex v. This can be verified by noting that there are 24
plaquettes adjacent to v (four for each μ-ν plane), and each
plaquette is included by exactly two links in (11). Higher
order constraints may be found by taking products of (11)
for some subset C of vertices, and eliminating any Al
included in the product twice. Note that each Al for a given
link l ¼ fv; v0g will be included in such a product if and
only if v ∈ C or v0 ∈ C, so that C and ΛnC yield the same
constraint (see Fig. 1).
This set of constraints suggests the following duality: for

each spin flip configuration C in the Ising low temperature
expansion (10), we obtain a unique identity product in the
4DTC high temperature expansion. Moreover, each Al
operator included in such a constraint must correspond
exactly to a bad bond in C. This shows that the series (10) is
entirely contained within (4), with a global prefactor and
the replacement e−2βJ → Ta:

Ta ¼
1

2
T2L4

a Z4DI

�
1

2J
log

1

Ta

�
þOðTL3

a Þ; ð12Þ

where the terms of order TL3

a or higher, OðTL3

a Þ, arise due
to the topology of the lattice, and are negligible to the
thermodynamic free energy.
Turning to Tb, we similarly note the constraint

Y

c∈∂h
Bc ¼ 1; ð13Þ

where the product is over the eight cubes contained in a
minimal 4D hypercube h. By multiplying such constraints,

FIG. 1. A 2D cross section of a 4D lattice, with classical Ising
spins at each site. Each red dotted link corresponds to a broken
bond, and each blue loop is the 1D cross section of a 3D
hypersurface domain wall. In the 4D lattice, the product of Al
over all red links and the product of Bc over all blue cubes
correspond to two independent constraints.
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we can generalize (13) to include products over any closed
three-dimensional hypersurface; the number of Bc oper-
ators in such products is the three-dimensional hypersur-
face area (Fig. 1). This set of constraints also suggests a
duality to (10) via another lens. Here, instead of placing
Ising spins at each vertex of the lattice, we imagine placing
spins at the center of each hypercube h, creating another
lattice Λ0 a half-spacing off from Λ. Whereas the Al in (11)
stem from broken bonds in the Ising model on the same
lattice, each Bc operator in this duality represents a domain
wall separating different spin orientations in an Ising model
on Λ0. The hypersurface area of this domain wall is equal to
the number of broken bonds in the Ising configuration.
From this, we see that the same duality as (12) holds for Tb,
with Ta replaced with Tb. Indeed, once Z4DTC has been
factored as in (3), this duality is known as a Wegner duality
[27], or more particularly as a “lattice gerbe theory”
duality [41].
One might reasonably worry that the above discussion is

too cavalier: although it is clear that each pair of spin flip
configurations C and ΛnC generates a unique constraint via
(11), how do we know that all terms of (4) below order TL3

a
can be found this way? Additionally, how do we know that
the subextensive contributions to Z4DTC are negligible in
the free energy’s thermodynamic limit? These questions,
and analogous ones for Tb, are addressed with a careful
proof of the duality (12) in the Supplemental Material [40].
Haah’s code.—Haah’s code is defined as follows

[12,13]: let Λ be a D ¼ 3 lattice, where we associate
two qubits with each vertex v ∈ Λ. Letting σμv and τμv label
the first and second qubits, respectively, at each vertex, the
operator Av is then defined as in Fig. 2:

Av ≡ σxvτ
x
vτ

x
vþexτ

x
vþeyτ

x
vþez

σxvþexþeyσ
x
vþexþezσ

x
vþeyþez : ð14Þ

The operator Bv is similarly defined as in Fig. 2:

Bv ≡ τzvþexτ
z
vþeyτ

z
vþezσ

z
vþexþey

σzvþexþezσ
z
vþeyþezσ

z
vþexþeyþezτ

z
vþexþeyþez : ð15Þ

As usual, ½Av; Bv0 � ¼ 0 for any two sites v and v0, and the
model’s Hamiltonian HHaah and partition function ZHaah
are defined as in (2) and (3), respectively. For an analysis of
its gaugelike symmetries see [40]. Note that the operators
Av and Bv are simply reflections of one another, so their
constraints will be identical.
Haah’s code features an intricate ground state degen-

eracy (GSD) [14]: unless L is a multiple of 4p − 1 for
p ≥ 2, GSD ¼ 4 for odd L [13]. We will restrict our
attention to these models, as they are the most pertinent to
quantum error correction: it has been argued [14,35] that,
for these values of L, the model demonstrates long memory
timescales at low temperatures.
While the nature of constraints in HHaah varies wildly for

different values of L, the number of constraints (including
the trivial empty product) is always equal to log2 GSD [14].
Thus, when GSD ¼ 4, the two independent constraints are
those present for all L,

Y

v∈Λ
Av ¼ 1;

Y

v∈Λ
Bv ¼ 1: ð16Þ

These relations can easily be verified by observing that the
product of each of the eight corners of the cubic operators
yields the identity. The partition function is then:

ZHaah ¼ 22L
3ðCL3

a þ SL3

a ÞðCL3

b þ SL3

b Þ: ð17Þ

Alternatively, let si and ti be classical Ising spins
(1 ≤ i ≤ L3). Then, within the bond-algebraic framework
of dualities as isomorphisms between the terms (“bonds”)
appearing in dual Hamiltonians [28], the mapping

Av → sisiþ1; Bv → titiþ1; 1 ≤ i ≤ L3 ð18Þ

with L3 þ 1≡ 1 similarly implies the duality of Haah’s
code to two periodic Ising chains. This duality suggests
that the finite temperature dynamics of Haah’s code are
identical to those of finite temperature classical Ising
chains, and may thus be unstable to thermal fluctuations
(i.e., exhibit “thermal fragility” [15]).
We caution that the duality (18) only holds exactly for

the case GSD ¼ 4: although the thermodynamic limit can
be taken along an infinite sequence of L satisfying this
condition [35], each variation of constraints at different L
requires a new bond-algebraic duality. Nevertheless, the
number of constraints never exceeds 2OðLÞ for any system
size, and the free energy remains analytic at any finite
temperature in any thermodynamic limit as a result [14].
This suggests that Haah’s code may remain in the 1D Ising
universality class along any thermodynamic limit.
Conclusions.—We showed how to generically analyze

the partition function of a CSS stabilizer code Hamiltonian
using duality techniques. We illustrated our strategy on the
4DTC and Haah’s cubic code, two quintessential stabilizerFIG. 2. Haah’s code: the two operators of Eqs. (14) and (15).
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codes. Our results support the generally held belief that the
4DTC exhibits self-correcting properties at sufficiently low
temperatures. While several works suggested that Haah’s
code may be partially self-correcting at finite temperatures
[13,14,35,42], our results instead suggest that Haah’s code
may suffer the same thermal fragility as Ising chains. The
dimensional reduction implied by generalized Elitzur’s
theorem [19,20] bounds general correlation functions on
d-dimensional subsystems. This, however, does not imply
that the thermodynamics is that of canonical d-dimensional
systems [18]. Examples to that effect are afforded by (i) the
90° square lattice compass model [43], a system with d ¼ 1
symmetries and 2D Ising universality class and (ii) the
“XXZ honeycomb model” [44], a compass model with
similar d ¼ 1 symmetries, that is dual to the 2D quantum
Ising lattice gauge theory. It should indeed be noted that
even in the absence of exact dualities, the bounds implied
by Elitzur’s theorem (reducing various correlation func-
tions to those in conventional d-dimensional systems) may
suggest restrictions on memory times [15,19,20].
The 2D Ising model can serve as a self-correcting

classical memory below its critical temperature, in the
sense that the information stored is robust to magnetic or
thermal fluctuations [45,46]. By contrast, the 1D Ising
model suffers a finite memory timescale independent of
system size at all nonzero temperatures due to the absence
of an ordered phase [45,47]. Similarly, it is commonly
accepted that the 2DTC suffers from relaxation times
independent of system size, while the 4DTC is believed
to function as a robust quantum memory below a critical
temperature [15,16,36,48]. The relationship between these
classical and quantummemories can be understood through
duality: bond algebraic dualities suggest that the dynamics
of the 2DTC on the torus are identical to that of two 1D
Ising chains. In the Supplemental Material [40], we discuss
how the topological degeneracy commonly associated
with these models appears as a global prefactor in the
dual partition function. A common concern regarding the
use of dualities for analyzing dynamics is that local heat
bath perturbations become generally nonlocal in the dual
model. In the Supplemental Material [40], we show that a
local coupling to a heat bath in the 2DTC can induce a local
coupling in the dual Ising model as well.
This analogy highlights the utility of the duality tech-

niques developed in this Letter: by determining a stabilizer
code Hamiltonian’s classical dual and corresponding uni-
versality class, one obtains all information regarding the
model’s critical phenomena without performing detailed
numerical analyses (see Table I). Using the techniques
explicitly demonstrated here and in previous works, we
conjecture that all sufficiently generic stabilizer models—
CSS and beyond—can be analyzed for thermodynamic
and, in some cases, dynamical behaviors. A finite temper-
ature phase transition and corresponding stable phase may
be a crucial ingredient [5,15] for large autocorrelation times

and robust quantum memories. As we will elaborate
elsewhere, dualities similar to those invoked in the current
work may find further applications in the study of entropic
measures.
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