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Introducing quantum sensors as a solution to real world problems demands reliability and controllability
outside of laboratory conditions. Producers and operators ought to be assumed to have limited resources
readily available for calibration, and yet, they should be able to trust the devices. Neural networks are
almost ubiquitous for similar tasks for classical sensors: here we show the applications of this technique to
calibrating a quantum photonic sensor. This is based on a set of training data, collected only relying on the
available probe states, hence reducing overhead. We found that covering finely the parameter space is key
to achieving uncertainties close to their ultimate level. This technique has the potential to become the
standard approach to calibrate quantum sensors.
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Quantum technologies are experiencing a worldwide
effort to foster their applications beyond what is achieved in
a laboratory. In particular, for quantum sensing, quantum
resources are promising to reach an accuracy beyond what
is permitted from classical counterparts [1]. This advantage,
however, is conditioned on a robust operation in the
presence of noise as well as imperfections of the measuring
instruments [2,3]. Many methods have been proposed to
this end, including error correction [4–7], monitoring of the
environment [8], and imperfection-tolerant probe state
design [9,10].
Regardless of the method adopted, it is vital to devise

analysis methods that grant optimal use of the collected
data for estimation, i.e., to obtain the so-called optimal
estimator. In simple instances, the maximum likelihood
approach or methods based on Bayes’ theorem are known
to provide such an estimator [11,12]. On the other hand,
these are generally computationally intensive, often require
a more involved characterization of the system [13–16],
and thus pose difficulties in scaling to configurations with
increased complexity. Further, characterization is generally
based on preparing quantum states with different require-
ments than those actually used in the estimation routine
[17–19]. From the perspective of compact architectures,
the resulting requirement of flexibility may come at odds
with that of reliability and reduced costs [20]. A method
that is self-consistent, resource economic, and versatile is
desirable.
Nowadays, the incredible amount of data collected in

diverse problems, such as financial market analysis or
bioinformatics, requires protocols which are capable of
efficiently self-adjusting their operation. The size and com-
plexity of these problems has imposed machine learning

(ML) algorithms as the mainstream solution in these
situations [21,22]. ML has been recently proposed and
applied as a tool for characterization and optimization of
quantum systems, as well as for handling quantum physics
problems [23]. Notable examples include its adoption for
the learnability of quantum measurements, states, and
processes [24–31], validation of multiparticle interference
[32,33], quantum state engineering [34–36], and as a tool
for quantum experiment design and control [37–43]. In the
context of quantum metrology, ML has found an applica-
tion in quantum phase estimation protocols to efficiently
extract the information encoded in the probe [44–46]. More
specifically, ML represents a powerful toolbox to optimize,
via adaptive protocols [47–49], the performance of a sensor
operating with a small collection of repetitions [12]. These
considerations suggest the viability of this approach for the
calibration of quantum sensing apparatuses. Specifically,
neural networks can extract an output value of the param-
eter of interest, following their training on a set of inputs
associated with a calibrated set of parameters; this is an
efficient algorithm that can be run on ordinary machines
[50,51]. No explicit modeling of the imperfections is thus
needed, as that information will be taken into account,
although in implicit form, in the training itself. This results
in a practical relevance of the method, in particular, for
sensors whose operation depends on a large number of
parameters. On the other hand, the training data can only be
collected in finite time, hence with finite statistics: it is
important to understand how the associated uncertainty
influences the quality of the final estimation and its
capability of showing quantum enhancement. In this
Letter, we discuss the characterization of a quantum phase
sensor based on N00N states by means of the neural

PHYSICAL REVIEW LETTERS 123, 230502 (2019)

0031-9007=19=123(23)=230502(6) 230502-1 © 2019 American Physical Society

https://orcid.org/0000-0001-8513-3766
https://orcid.org/0000-0002-0674-767X
https://orcid.org/0000-0003-3471-2252
https://orcid.org/0000-0002-8152-2112
https://orcid.org/0000-0003-1715-245X
https://orcid.org/0000-0003-2057-9104
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.230502&domain=pdf&date_stamp=2019-12-04
https://doi.org/10.1103/PhysRevLett.123.230502
https://doi.org/10.1103/PhysRevLett.123.230502
https://doi.org/10.1103/PhysRevLett.123.230502
https://doi.org/10.1103/PhysRevLett.123.230502


network. We find that the simplicity of the characterization
does not impact heavily the metrological capabilities of the
device. The algorithm has no strict requirements in its
settings to provide near-optimal performance of the esti-
mation, provided that the set of the parameter is explored
with adequate resolution. Thanks to its compact imple-
mentation and its scalability, this method can find wide
applications in future quantum technologies.
The concept behind our investigation is depicted in

Fig. 1. The training step [Fig. 1(a)] consists of collecting
a set of data N⃗ðϕÞ corresponding to different values of the
parameter of interest ϕ; in general N⃗ will be in the form of a
vector, since it contains multiple measurements, as needed
to obtain a correct normalization, to remove ambiguities or
to account for multiple parameters. This is used as an input
to a network, consisting of a set of neurons connected
among them, possibly forming subsequent layers. The
training procedure establishes the weights associated
with the connections between each pair of neurons.
Unavoidably, an uncertainty will be associated with these
measured data, and the network needs to be trained to
account for this variability. If the noise statistics on each
measurement in N⃗ is known, a bootstrapping method can
be employed. This consists of generating multiple fictitious
runs nb of the calibration measurements performed and can
be achieved by means of a Monte Carlo routine [52].
Bootstrapping does not provide additional information on
the mean value of the measured counts, but it is required to
supply the training information on the variance of the
counts. For a fixed network size, the quality of the training
will be influenced by the resolution at which ϕ is sampled,
as well as the number of repetitions Mtrain used for each
value of ϕ. Once the training is complete, the device can be
used for parameter estimation: the network is now operated

to accept the collected data N⃗0 as an input and to provide an
estimation ϕ0 as the output [Fig. 1(b)]. By using the same
bootstrapping method above on N⃗0, the uncertainty Δϕ0

can also be evaluated.
We test this method in a quantum phase estimation

experiment. A two-photon N00N state on the right- and
left-circular polarization of a single spatial mode approxi-
mating jψi ¼ 2−1½ða†RÞ2 þ ða†LÞ2�j0i is used for this task
(see Fig. 2). This is achieved by overlapping on the same
spatial mode two otherwise indistinguishable orthogonally
polarized photons by means of a polarizing beam splitter
(PBS) [16,53]: the photon pairs are generated via a type-I
spontaneous parametric down-conversion source using a
3 mm β-barium borate crystal pumped with a 405 nm cw
laser; their polarization is then set orthogonal by means of
half wave plates (HWPs) and they are sent on a PBS
obtaining the circular polarization N00N state. The meas-
urement is then carried out collecting a vector of coinci-
dence counts associated with photon pairs after they have
accumulated a relative phase ϕ, resulting from the rotation
of their polarization state. For each phase, we look at the
coincidence counts relative to four different polarization
projections [16].

(a)

(b)

FIG. 1. Schematics of the use of neural networks for parameter
estimation. The first step (a) consists of training the network by
inputting a set of training data using bootstrapping to account for
uncertainties. Upon completion, the actual estimation (b) uses the
trained network to extract an estimate of the parameter.

FIG. 2. (a) Experimental setup. The N00N state probe accu-
mulates a phase ϕ ¼ 4χ by means of a test half wave plate (t-
HWP). The analysis is carried out by a second measurement plate
(m-HWP), a polarizing beam splitter, and coincidence detection
of two avalanche photodiodes (APDs). (b) Part of the exper-
imental training set. The registered count rates and those derived
from bootstrapping are reported as a function of the calibrated
phases ϕ. The labels indicate the angular setting θ of the
measurement HWP, corresponding to four different polarization
projections.
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Even in this simple instance, many imperfections affect
the actual experimental apparatus, including those linked
to the phase preparation, as well as imperfect splittings on
the PBSs and polarization-dependent efficiencies of the
detection channels. If a maximum likelihood or Bayesian
technique were to be used for phase estimation, expression
for the probabilities, encompassing all these parameters,
would be needed. In more complex scenarios this becomes
even more demanding. We test how the effectiveness of the
implicit treatment of imperfections is made possible by
neural networks.
In order to perform the training, we collect data for 180

different phase values from 0° to 180° in steps of 1°, simply
obtained by rotating a HWP from 0° to 45° in steps of
0.25°—the relation between the phase ϕ and the HWP
angle setting χ is ϕ ¼ 4χ. The initial training data thus
consist of 180 vectors, each containing four counting rates.
Each projection accumulates data for 1 s, which, at the
observed count rate, corresponds to aroundMtrain ¼ 10 000
total events for each phase, divided among the four
projections (Fig. 2).
The coincidence counts of the training set are normalized

to the total number of collected events Mtrain to obtain the
associated frequencies that are used for the supervised
training of the network. This yields a calibration that is
independent of the number of events collected during the
training, which would otherwise result in an unnecessary
limitation for the device. Since the coincidence counts
follow a Poissonian distribution, we can test the accuracy
by using the bootstrap procedure described above to feed
our network with different repetitions associated with
each phase. The network is structured as a feed forward
network with sigmoid hidden neurons [54]. This includes
an input layer, an output layer, and a hidden layer with nn
neurons. The input data are randomly divided in a training
set (70%), a validation set (15%), and a test set (15%) (see
Supplemental Material [55]). The network is trained with the
Levenberg-Marquardt backpropagation algorithm [61,62]
designed to optimize for every phase the precision on the
validation set using the mean square error metric. The
training stops when the validation error stops decreasing.
We have run tests on simulated data to establish the

optimal parameters for the training for fixed sampling step
and total count rate: for this purpose, we input into the
trained network the counting rates corresponding to 30
values of the phase and consider as the error ϵ the mean
standard deviation calculated on 100 repetitions and aver-
aged on all phases. Figure 3 shows how this error depends
on the number of neurons nn in the network and on the
number of Monte Carlo runs per phase value nb. The data
do not show sharp optimal working points: we have
adopted one hidden layer in the network with 30 neurons,
trained with 50 Monte Carlo repetitions.
With the network architecture fixed according to the

parameters discussed above, i.e., a 30 neurons single

hidden layer, we have proceeded to the final training of
the network. The testing performed so far only addresses
the self-consistency of the operation of the network.
However, the assessment of the calibration for the sensor
needs further investigation. In order to perform a phase
estimation detached from that performed in the training, we
have then collected five further sets for the phases 20.8°,
45°, 90°, 140°, and 168.8° at different accumulation times
(0.5, 1, and 4 s) at the same generation rate as for the
training and 0.5 s at 30% of the initial generation rate.
These result in a different number of collected events Mexp
for each set. We can thus observe how the uncertainty
scales with Mexp for fixed training parameters. The uncer-
tainties in the phase Δϕ are evaluated with the standard
deviation over the 50 bootstraps on the experimental data
collected for the estimation. In Fig. 4, we show such
uncertainties compared to the associated Cramér-Rao
bound (CRB) [1,63]. The uncertainties remain close to
the ultimate limit, which also takes into account the reduced
contrast of the coincidence oscillations. Remarkably, we

FIG. 3. Exploration of the training parameters, based on
Mtrain ¼ 10 000 simulated events. (a) Estimation error ϵ as a
function of the number of neurons nn in the hidden layers of the
network at nb ¼ 50. For nn ¼ 30, we have considered a single
layer or two layers with 20 and 10 neurons. (b) Estimation error ϵ
for a different number of Monte Carlo repetitions nb obtained
from bootstrapping at nn ¼ 30. The solid line indicates the
Cramér-Rao bound. (a),(b) The error bars are calculated from
35 different trainings; this takes into account the variations due to
the random initialization of the neural network algorithm at the
beginning of the procedure.
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observe that such performances are achieved also for a
number of events exceeding those used for the training,
making the calibration with the neural network robust to
noise. We have repeated the training stage decreasing the
step size of the phase to 2°. The distance to the CRB is more
pronounced: the network has received insufficient training
to produce an output with an accuracy close to optimal. We
noticed that, also in this case, a reduction of the uncertainty
is observed when increasing the number of events Mexp.
We put these observations in quantitative terms by inspect-
ing FMexp

¼ Δ2ϕ=σ2, i.e., the ratio between the measured

variance Δ2ϕ and the one σ2 at the CRB at a given Mexp.
We obtain the following values: F1000¼1.25, F5000¼1.39,
F10 000 ¼ 1.48, and F40 000 ¼ 1.53. We note that the F value
increases with the repetition number, which implies that
variance is diminishing with Mexp, however, not as fast as
the CRB is. This is due to the lack of resolution in the
training, which is not a fundamental limit, and in our case
it is solely constrained by the accuracy of the actuator
of m-HWP.
While overall successful, this characterization underlines

some issues that need to be addressed. The first one is a

boundary effect that is observed close to ϕ ¼ 0° and
ϕ ¼ 180°. This border effect prevents us from obtaining
a reliable estimate close to this value and can be removed
by increasing the region explored for the training, which
should span a wider phase interval than the one potentially
covered in the measurement. Excess uncertainty is asso-
ciated with phases close to ϕ ¼ 90°, a problem we can
attribute to the particular symmetries of the count signals
(see Fig. 2). A second issue regards a periodicity ambiguity
arising due to the form of the system probabilities. We note
that using the four count signal scheme allows us to
suppress the periodicity ambiguity on the phase from 0
to π=2 to the range 0 − π, but still leaves an ambiguity in
the range 0 − 2π. This latter ambiguity can be approached
by integrating adaptive techniques, able to discriminate an
unknown phase in the full interval [12], within the phase
estimation protocol.
In order to verify that the versatility of the method is not

associated with reduced metrological capabilities, we have
performed numerical simulations. In particular, we con-
sidered an alternative scenario consisting of maximum
likelihood estimation associated with a calibration pro-
cedure that performs a reconstruction of the system out-
come probabilities. Contrary to the adoption of neural
networks, such method requires information on a theoreti-
cal model describing the system parameters and imperfec-
tion. In general, this requirement becomes impractical for
large-size sensors. Nevertheless, numerical simulations
and additional analysis on experimental data show that,
for a fixed number of resources employed in the calibration,
the neural networks method is capable of matching or
even outperforming maximum likelihood estimation (see
Supplemental Material [55]).
In conclusion, we have applied a neural network algo-

rithm to the calibration of a quantum phase sensor. This
method compares favorably to previous investigations that
require a complete reconstruction of the functioning of the
device [13,14] or to the data fitting pattern technique [19].
The practical relevance of our technique lies foremost in
lacking the requirement of a detailed theoretical model
encompassing all sensor parameters and noise sources for
regularization of the data, otherwise crucial to perform an
accurate interpolation procedure. The uncertainties on the
calibration data are easily taken into account by means of
repeated training with bootstrapped data. Furthermore,
calibration of the sensor can be performed by having
access only to the same set of input states and computa-
tional resources that are employed in the estimation
process. This is particularly relevant in the perspective
of large-scale fabrication of such devices, for which an
analysis based on off-line characterization states would be
impractical. This practical relevance is kept also with
respect to cases in which an effective characterization
can be carried out in terms of extra parameters—as long
these remain fixed. Indeed, this would rely on a modeling
of the imperfections, which might only be captured in part.

FIG. 4. Uncertainties for parameter estimation. (a) Training set
with a sampling step of 1°. (b) Training set with a sampling step
of 2°; notice the logarithmic scale. (a),(b) The points refer to total
numbers of events Mexp ≃ 1000 (black solid dots), Mexp ≃ 5000
(green squares), Mexp ≃ 10 000 (blue empty dots), and Mexp ≃
40 000 (red diamonds); the curves are the Cramér-Rao bounds for
the same number of events.
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Further perspectives of this work can be found in
extending the application of neural networks for the
calibration of quantum sensors operating in the multi-
parameter regime, where multiple phases [64–67] and
relevant system physical quantities [16,68], including
noise, have to be measured simultaneously. Indeed, in
those scenarios, reliable calibration methods become par-
ticularly crucial due to the increasing complexity of
characterizing all the system parameters, as well as the
computational overhead in handling a large amount of data.

We acknowledge support from the Amaldi Research
Center funded by the Ministero dell’istruzione
dell’università e della ricerca (Ministry of Education,
University and Research) program “Dipartimento di
Eccellenza” (CUP:B81I18001170001).

Note added.—Recently, we became aware of two works
[69,70] in which neural networks have been applied to
quantum state estimation and quantum simulation.
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