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Neuronal activity induces changes in blood flow by locally dilating vessels in the brain micro-
vasculature. How can the local dilation of a single vessel increase flow-based metabolite supply, given that
flows are globally coupled within microvasculature? Solving the supply dynamics for rat brain micro-
vasculature, we find one parameter regime to dominate physiologically. This regime allows for robust
increase in supply independent of the position in the network, which we explain analytically. We show that
local coupling of vessels promotes spatially correlated increased supply by dilation.
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Vascular networks pervade all organs of animals and are
the paradigm of adaptive transport networks. Their self-
organized architecture continuously inspires the search for
their underlying physical principles [1–4] and at the same
time serves as a template for designing efficient networks in
engineering [5]. The blood flowing through vessels trans-
ports nutrients, hormones, and metabolites to adjacent
tissues. Metabolite exchange primarily occurs within the
fine vessel meshwork formed by microvasculature. In the
brain, local metabolite demand can abruptly rise due to an
increase in neural activity [6], altering blood flow [7,8] in
the same brain region, observable in fMRI [9]. During the
process of increased neuronal activity, neurons signal their
increased demand to adjacent astrocyte cells, which in turn
trigger small ring muscles surrounding blood vessels to
relax [10]. Thus, neural activity drives local dilation of a
vessel [11,12], and hence regulates metabolite supply
[7,13]. However, from a fluid dynamics perspective there
is a mystery: blood vessels form a highly interconnected
network in the microvasculature [8], resulting in a global
coupling of blood flow. A single dilating vessel can
potentially change the metabolite supply in a broad region
of the network—and thus the local increase due to dilation
is a function of specific network topology. Quantitatively,
how much control over changes in blood-based supply
resides in a single dilating vessel?
Models considering metabolite spread in tissue date back

more than a hundred years to A. Krogh [14]. Krogh’s model
estimates the supply pattern in a tissue enclosed by vessels
assuming that supply is constant on all vessel walls. Yet, on
a larger tissue scale, supply spatially varies along the
vasculature, since resources supplied upstream are not
available downstream. Alternative models consider ves-
sel-based transport [15], yet only diffusive transport is
taken into account. The combined importance of advection

and diffusion for transporting solutes in a single tube was
discovered by G. I. Taylor [16,17], with subsequent work
outlining modifications due to solute absorption at the tube
boundary [18–20]. Yet, there has been much less work
capturing the coupling of advection and diffusion in tubular
network structures [21,22], including solute absorption
[23]. The impact of a dilating vessel is hard to estimate,
since not only the absorption dynamics on the level of
single vessels is changed, but also solute flux throughout
the network is rerouted, since fluid flow and thus solute
flux are globally coupled. However, to connect fMRI,
which relies on a fluid dynamic signal [9,24,25], and the
change in blood flow with neural activity [7,11,26–28], we
need to understand how vessel dilations affect the supply
with metabolites.
In this Letter, we present a theoretical model to determine

the change in supply resulting from the dilation of a single
vessel. On the level of an individual vessel, we analytically
identify three regimes, each yielding a different functional
dependence of the overall supply by absorption along the
vessel wall on vessel geometry, blood flow, and blood-flow-
based solute flux. Numerically analyzing supply dynamics
in amicrovasculature excerpt of a rat brain supplied from the
Kleinfeld laboratory [8], we find that a single regime
dominates. This regime has the important property that
dilating a single vessel robustly increases the supply along
the dilated vessel independent of the exact location of the
vessel in the network. We explain analytically how a single
vessel can buffer the global coupling of solute fluxes within
the network and yield a robust local increase independent of
network topology. We further discuss how a single dilating
vessel impacts the solute flux downstream and thereby
induces spatial correlations in supply increase.
To understand how a change in flow induces changes in

solute flux and supply dynamics, we first focus on a single
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vessel. We assume that the flow is laminar with a longi-
tudinal velocity profile UðrÞ ¼ 2Ū½1 − ðr=RÞ2� [29,30],
where Ū denotes the cross-sectional averaged longitudinal
flow velocity. The dispersion of soluble molecules of
concentration C by the fluid flow within a tubular vessel
of radius R and length L is then given by

∂C
∂t þ UðrÞ ∂C∂z ¼ κ∇2C; ð1Þ

where κ denotes themolecular diffusivity of the solute, and r
and z parametrize the radial and longitudinal components of
the vessel. The soluble molecule is absorbed at the vessel
boundary, following

κ
∂C
∂r

����
r¼R

þ κγCðRÞ ¼ 0; ð2Þ

with absorption parameter γ. In analogy to the derivation of
Taylor dispersion [16,17,23], we simplify the multidimen-
sional diffusion-advection forC ¼ C̄þ C̃ to an equation for
the cross-sectionally averaged concentration C̄ if the cross-
sectional variations of the concentration C̃ are much smaller
than the averaged concentration itself. This is true if
the timescale to diffuse radially within the vessel is
much shorter than the timescale of advection along the
vessel,R2=κ ≪ L=Ū, if the vessel itself can be characterized
as a long, slender vessel, R ≪ L, and if the absorption
parameter is small enough to keep a shallow gradient in
concentration across the vessel’s cross section γR ≪ 1,
which states that the length scale of absorption is much
bigger than the vessel radius. All these approximations are
valid for the rat brain microvasculature example considered
here [8]. With these assumptions, the concentration profile
along the vessel approaches a steady state over a timescale
L=Ū given by (see S1 in the Supplemental Material [31] for
derivation)

C̄ðzÞ ¼ C0 exp

�
−βðPe; S; αÞ z

L

�
; ð3Þ

βðPe; S; αÞ ¼ 24Pe

48þ α2

S2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8S
Pe

þ α2

6PeS

r

− 1

�
; ð4Þ

where Pe ¼ ŪL=κ is the Péclet number, α ¼ γL, and S ¼
κγL=RŪ measures the ratio of the absorption rate to the
advection rate. Note that the concentration decays along the
vessel starting from an initial concentration C0 that itself is
determined by the solute flux entering a vessel J0. Also, for
the solute influx into a vessel, the advective and diffusive
transport contribute:

J0 ¼ πR2C0

�
Ū þ κβ

L

�
¼ πR2C0Ū

�
1þ β

Pe

�
: ð5Þ

We define as the supply of a vesselϕ the integrated diffusive
flux through the entire vessel surface S of the cylindrical
vessel,

ϕ ¼ −
Z

S
κ
∂C
∂r

����
r¼R

2πRdz: ð6Þ

resulting in

ϕ ¼ J0
1

1þ β
Pe

� α2

12SPe þ 2 S
β

1þ α2

4SPe

�
½1 − exp ð−βÞ�: ð7Þ

For physical intuition on how flow and vessel properties
affect supply, we partition the phase space of supply
dynamics spanned by Pe and S into three regimes, keeping
α fixed; see Fig. 1. At large values of S ≫ 1 and S ≫ 1=Pe,
the solute decays very quickly along the vessel. Here, all
solute that flows into the vessel of cross-sectional area πR2

is absorbed at the wall, here denoted the all-absorbing
regime:

ϕall ≈ J0 ¼ πR2C0Ū

�
1þ β

Pe

�
: ð8Þ

For a network, this implies that after a vessel in this regime,
no solute for further absorption downstream of this vessel
is available, which indeed is physiologically rare, 1.0%
in the rat brain microvasculature considered here. A
second regime occurs at Pe ≪ 1=S, Pe ≪ S, where dif-
fusive transport dominates, here denoted the diffusive
regime. We distinguish a third regime, which we denote
the advective regime, where advective transport dominates,
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FIG. 1. Supply, ϕ, by a single vessel can be partitioned into
three distinctive regimes as a function of dimensionless param-
eters characterizing flow and absorption, Pe ¼ ŪL=κ and
S ¼ κγL=RŪ. Dotted lines indicate separation of regimes. The
remaining nondimensional parameter is fixed at α ¼ 0.001. Error
ellipsoids contain the annotated percentage of vessels of the here-
considered rat brain microvasculature [8] with physiological
parameters for γ and κ; see the main text.
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defined by S ≪ 1 and S ≪ Pe. In both cases the solute
decay is very shallow, β ≪ 1 in Eqs. (3) and (7), resulting
in supply independent of flow velocity, except for the
dependence on the initial concentration C0:

ϕadvective ≈ ϕdiffusive ≈ 2πRLκγC0: ð9Þ
Yet, note that the reason for the solute decay—i.e., β being
small—arises from entirely different transport dynamics;
see Fig. 1. This is reflected in the very different relations
between initial solute concentration at the start of the vessel
C0 and the solute influx J0 for the two regimes (see S1 in
the Supplemental Material [31] for derivation):

J0;advective ≈ C0πR2Ū; ð10Þ
J0;diffusive ≈ C0πR3=2κ

ffiffiffiffiffi
2γ

p
: ð11Þ

Hence, under constant solute influx J0, the diffusive and the
advective regimes show fundamentally different, yet both
nonlinear dependences on the vessel radius:

ϕadvective ≈ J0
2γκL
RŪ

; ð12Þ

ϕdiffusive ≈ J0

ffiffiffiffiffi
2γ

p
L
ffiffiffiffi
R

p : ð13Þ

Based on these results for a single vessel, we expect largely
varying increase in supply in response to vessel dilation.
The coupling of flows and solute flux in a network is likely
to make supply changes even more complex.
Within a network, not only are fluid flows

coupled with every network node obeying Kirchhoff’s
law,

P
j πR

2
in;jUin;j ¼

P
k πR

2
out;kUout;k, but also solute flux

J is conserved at every node,
P

j Jin;j ¼
P

k J0;k. Here, the
solute influx Jin;j is determined by the inlet’s vessel inflow
J0;j upstream reduced by the amount of supply, ϕj, via that
vessel; see Eq. (7). The influxes J0;k downstream a node,
defined by Eq. (5), follow from the solute concentration at
the network node C0, given by

C0 ¼
P

jJin;jP
kπR

2
out;kðŪout;k þ κβout;k=Lout;kÞ

: ð14Þ

Thus, solute fluxes are subsequently propagated from
network inlets throughout the network.
To now investigate the impact of single-vessel dilation

on supply within a network, we turn to an experimentally
mapped rat brain microvasculature [8]. The data specify R,
U, and L for all vessels, as well as the pressures at network
inlets and outlets. Focusing on glucose as the primary
demand, we account for glucose’s diffusion constant κ ¼
6 × 10−10 m2 s−1 [36] and estimate glucose’s permeability
rate, including γ ¼ 200 m−1; see S2 in the Supplemental
Material [31]. Interestingly, we find 98% of all vessels to be

in the advective regime. Is there a functional property that
makes the advective regime stand out?
Wenext quantify the change in supply due to vessel radius

dilation in a capillary bed excerpt of the mapped rat brain
microvasculature excluding pial and penetrating vessels. To
this end, we use the pressures given in the dataset [8] and
impose the pressure values at inlet and outlet vessels of a
network excerpt. To be consistent with the flows determined
within the dataset, we use a modified hydraulic vessel
resistance to account for additional blood hematocrit resis-
tance [37,38] in accordancewith Blinder et al. [8]. Note that
a vessel’s hydraulic resistance is only important for calcu-
lating fluid flow velocities within vessels but does not
modify the supply dynamics derived above. Pressures and
hydraulic resistances then fully determine the flowvelocities
throughout the network due to Kirchhoff’s law.
To identify differences in the behavior of the three supply

regimes that may justify the physiological abundance of the
advective regime, we sample the effect of vessel dilation for
all three regimes, drawing randomly 120 vessels in each
regime out of the total number of 21 793 vessels. The sheer
total number of vessels allows us to sample the under-
represented diffusive and all-absorbing regimes without
introducing a statistical bias due to sample size. Each
vessel’s radius is dilated by 10%, and the flow and solute
flux are recalculated throughout the network, keeping the
network’s inlet and outlet pressures fixed. The relative
change in supply in the dilated vessel itself is evaluated in a
histogram; see Fig. 2. Vessels in the all-absorbing regime

FIG. 2. The advective regime is robust in increasing supply by
dilation. Histogram of change in supply Δϕ due to a single vessel
dilating by 10%. Lines indicate a range covering 69% with a
percentage of 15.5% in both directions showing a lower or higher
supply outside the indicated range. Big dots indicate the median,
with values of 0.17, 0.10, and 0.11 for the all-absorbing,
advective, and diffusive regimes, respectively. For each histo-
gram, 120 vessels of the respective regime were randomly chosen
and dilated.
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show a broad response to vessel dilation. Vessels in the
advective regime, in contrast, peak sharply at a robust 10%
increase in supply, Δϕ ¼ 0.1. The diffusive regime is also
somewhat peaked around Δϕ ¼ 0.1, but in addition shows
a significant amount of vessels with a smaller supply
increase of Δϕ < 0.1. Particularly, the advective regime
shows a robust increase in supply, matching the increase in
vessel diameter independent of the vessels’ exact position
within the network topology. This observation is robust
against changes in the choice of the diffusion constant and
permeability rate; see S6 in the Supplemental Material [31].
Despite our expectations of a nonlinear change in supply

from single-vessel dynamics [Eqs. (12) and (13)], we find a
robust increase of 10% for 10%vessel dilation,whichwould
be reconciledwithin Eq. (9), if the initial concentration at the
inlet of a dilating vessel C0 [Eq. (14)] stays constant despite
changes in flow and solute flux throughout the network.
Which network properties allow C0 to stay constant? What
makes the advective regime more robust than the diffusive?
Let us consider a network node, where all vessels are in

the advective regime with one inlet vessel and two outlet
vessels, and where out of the latter, one is being dilated.
Following Eq. (14) and the simplification of the solute
fluxes from Eq. (10) for the advective regime, the initial
concentration at the node is

C0 ≈ Cin
πR2

inUinP
kπR

2
out;kUout;k

¼ Cin; ð15Þ

where Kirchhoff’s law was used for further simplification.
Hence, even though vessel radius dilation induces changes
in the flow, C0 ≈ Cin remains unchanged, though Cin might
be affected by upstream changes in the supply. However, we
find that upstream effects on Cin are small if the upstream
vessels are in the advective or diffusive regimes—see S3 and
S5 in the SupplementalMaterial [31]—which leavesCin and
thus C0 approximately constant during vessel dilation. This
result generalizes to good approximation to the case where
the nondilating outlet vessel is in the diffusive rather than in
the advective regime; see S3 in the Supplemental Material
[31]. Note that the case where two inlet vessels merge into
one outlet vessel is fundamentally different, as then the
initial concentration at the node is a mixture from the two
inlet vessels. Dilation of the outlet vessel changes flow in
inlets differently and thereby changes the mixing ratio
nonlinearly. Physiologically, we find this pattern especially
closer toward venules. Taken together, these analytical
results are in agreement with the statistics of Fig. 2 and
explain in particular the robust increase in supply by dilation
if the vessel is in the advective regime.
We next probewhy the diffusive regime is less robust and

revisit the setting of one inlet and one outlet in the advective
regime, and the second outlet in the diffusive regime. But
now, we compute the initial concentration at the node, given
that we dilate the vessel in the diffusive regime:

C0 ≈ Cin;adv
πR2

in;advUin;adv

πR2
out;advUout;adv þ πR3=2

out;difκ
ffiffiffi
γ

p : ð16Þ

Now the dilation of the vessel in the diffusive regime
increases the denominator and thus leads to a decrease in
the resulting C0, rendering the diffusive vessel’s response
less robust compared to the advective. The same effect
happens if all vessels at a node are in the diffusive regime,
and even more so, as no vessel in the advective regime can
buffer the dilation- and diffusion-dominated solute flux
independent of flow velocity; see Eq. (11). Together, these
analytical arguments explainwhy the diffusive regimeyields
a less robust increase in supply upon vessel dilation.
We found in Fig. 2 that the supply in an upstream vessel

remains approximately constant during a single vessel
dilation. What is the effect on vessels downstream of the
dilated vessel? For this, we focus on the dilating vessel’s
immediate neighborhood and find that change in supply is
spatially correlated (Fig. 3). We distinguish the vessels in
the direct neighborhood of the dilated vessel in two
categories: downstream vessels are vessels that are located
directly downstream of the dilated vessel, and parallel
vessels are vessels that are downstream of the node the
dilated vessels branches from, but not downstream of the
dilated vessel itself. The microvasculature dataset is known
to show predominantly loop topologies, with a median size
of eight vessels within a loop [8]. We thus considered only
vessels with a topological distance of four vessels to the
dilated vessel for the analysis of the immediate neighbor-
hood. We find that the typical response of a dilating vessel
in both the advective and diffusive regimes is to increase
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FIG. 3. The advective and diffusive regimes robustly increase
supply downstream of a dilating vessel at the cost of decreasing
supply in parallel vessels. (a) Enlargement of microvasculature
excerpt exemplifying the neighborhood change in supply due to a
single vessel dilation of 10% (advective regime, black arrow).
Inlet marked by yellow star. Blue denotes a decrease, while red
denotes an increase in supply in the individual vessels. The total
change in supply is Δϕtot ¼ 6.4% in the downstream vessels and
ϕtot ¼ 0.8% in the parallel vessels. The change in C0 for the
dilating vessel is below ΔC0 < 3 × 10−4. (b) Neighborhood
statistics of supply increase “þ” or decrease “−” due to a dilating
vessel in the respective regime. Evaluated is the overall change in
supply in up to four vessels downstream or parallel to the dilated
vessel chosen at the main inlet of a loop. The dilated vessel itself
is excluded from the statistics here.
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supply downstream at the cost of reducing supply in the
parallel vessels [Fig. 3(b)]. More solute is drawn along
the branch of the loop containing a dilating vessel than the
dilating vessel itself is taking up, which increases the
supply in downstream vessels. This is at the expense of the
vessels in the parallel branch, reducing the supply there.
See also S4 in the Supplemental Material [31]. While this
applies qualitatively, the strength of this effect depends on
the exact network topology.
We have provided a theoretical framework to investigate

supply dynamics in a dynamically adapting tubular net-
work, where flows are globally coupled by topology. We
find that individual vessels can be classified into three
regimes by vessel geometry and flow rate. Among these,
particularly the regime governed by advective transport—
and to a lesser extent, also the regime governed by diffusive
transport—yields a robust increase in supply upon vessel
dilation within the dilating vessel, notably leaving the
supply pattern upstream unchanged and increasing supply
immediately downstream. Interestingly, the most robust
advective regime is found to dominate in brain micro-
vasculature. Our findings therefore promote the idea that
vessel dilation results in a robust increase in supply
independent of the exact position of the vessel in the
network. Our results are important for understanding the
link between neural activity and patterns of change in
supply invoked by vessel dilations and changes in blood
flow underlying fMRI. Moreover, our framework is instru-
mental to predicting drug delivery and designing blood
vessel architecture in synthetic organs, but it may also open
entirely new avenues for the programming of soft robotics
and smart materials.
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