
 

Survival of the Quantum Anomalous Hall Effect in Orbital Magnetic Fields
as a Consequence of the Parity Anomaly

Jan Böttcher† and Christian Tutschku†

Institut für theoretische Physik (TP4) and Würzburg-Dresden Cluster of Excellence ct.qmat,
Universität Würzburg, 97074 Würzburg, Germany

Laurens W. Molenkamp
Physikalisches Institut (EP3), Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

E. M. Hankiewicz*

Institut für theoretische Physik (TP4) and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg,
97074 Würzburg, Germany

(Received 18 January 2019; published 26 November 2019)

Recent experimental progress in condensed matter physics enables the observation of signatures of the
parity anomaly in two-dimensional Dirac-like materials. Using effective field theories and analyzing band
structures in external out-of-plane magnetic fields (orbital fields), we show that topological properties of
quantum anomalous Hall (QAH) insulators are related to the parity anomaly. We demonstrate that the QAH
phase survives in orbital fields, violates the Onsager relation, and can be therefore distinguished from a
quantum Hall (QH) phase. As a fingerprint of the QAH phase in increasing orbital fields, we predict a
transition from a quantized Hall plateau with σxy ¼ −e2=h to a not perfectly quantized plateau, caused by
scattering processes between counterpropagating QH and QAH edge states. This transition can be
especially important in paramagnetic QAH insulators, such as ðHg;MnÞTe=CdTe quantum wells, in which
exchange interaction and orbital fields compete.
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Introduction.—Condensed matter analogs of the Dirac
equation have opened new directions to study quantum
anomalies in the solid-state laboratory [1–8]. An anomaly
occurs, when a symmetry of a classical theory cannot be
maintained in the associated quantum theory [9–11]. For
instance, in massless, ð2þ 1ÞD quantum electrodynamics,
parity symmetry is broken during regularization if one
insists on gauge invariance (parity anomaly) [12–19]. As a
consequence, a Chern-Simons (CS) term is induced even in
the absence of a magnetic field [3,16].
In condensed matter physics, an analogous system is a

Chern (QAH) insulator which describes a single Dirac
fermion with a momentum dependent mass or, equiva-
lently, half of the Bernevig-Hughes-Zhang (BHZ) model
[20,21]. In our work, we examine hallmarks of the parity
anomaly in two-dimensional quantum anomalous Hall
(QAH) insulators subjected to an external out-of-plane
magnetic field (orbital field). In particular, we demonstrate
that the parity anomaly enables us to distinguish the QAH
from a quantum Hall (QH) phase. This is due to the fact,
that although both phases are described by the same
topological invariant, the Chern number [22], their physical
origin is very different: QH phases are induced by an orbital
field, whereas the QAH phase results from an inverted band
structure [23]. Here, inverted means that the ordinary

conduction band is below the ordinary valence band.
A QAH insulator is characterized by a quantized Hall
conductivity σxy ¼ Ce2=h with C ¼ ½sgnðMÞ þ sgnðBÞ�=2
[24], where 2M is the bulk band gap (Dirac mass gap) and
B is related to the effective mass. In our work, we reveal
that this characteristic quantity persists in orbital fields H
with

CðHÞ ¼ ½sgnðM − B=l2HÞ þ sgnðBÞ�=2; ð1Þ
where lH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=jeHjp
. Equation (1) shows that H counter-

acts the intrinsic band inversion until it eventually overcomes
the Dirac mass gap atM ¼ B=l2Hcrit

. Moreover, it illustrates a
violation of the Onsager relation which would require that
σxyð−HÞ ¼ −σxyðHÞ. This is a hallmark of the parity
anomaly in magnetic fields. In contrast, a conventional
QH phase fulfills the Onsager relation as σxy ∝ sgnðeHÞ.
As a signature of the parity anomaly, the survival of the

QAH phase induces a unique type of charge pumping.
Increasing the orbital field generates a charge flow from the
edges (charge depletion) into the bulk (charge accumula-
tion), starting at H ≠ 0. Moreover, as a function of H, the
QAH edge states are pushed into the bulk valence band,
leading to the coexistence of counterpropagating QH and
QAH edge states. If disorder is present, these states are not
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protected from backscattering. We predict, that these two
effects give rise to a system size dependent transition from
σxy ¼ −e2=h to a not perfectly quantized Hall plateau. The
average value of this plateau depends on details of the
scattering mechanisms. Such a transition should be observ-
able in (Hg,Mn)Te quantum wells [25] or in Bi-based QAH
insulators [26–29].
Model.—We start with a Chern (QAH) insulator

described by a single, nontrivial block of the BHZ model:

HðkÞ ¼ ðM − Bk2Þσz −Dk2σ0 þ Aðkxσx − kyσyÞ; ð2Þ
where k2 ¼ k2x þ k2y, σi are the Pauli matrices, Amixes both
(pseudo)spin-components, D introduces a particle-hole
asymmetry, and B, as well as M were defined before
[20]. The spectrum is obtained numerically by mapping
the Hamiltonian on a stripe geometry with finite lengthLy in
the ey direction (hard wall boundary conditions) and peri-
odic boundary conditions along the ex direction [30]. In
Fig. 1(a), the band structure with C ¼ −1 is displayed, with
chiral QAH edge states traversing the Dirac mass gap. Since
D ≠ 0, the Dirac point lies close to the conduction band
edge [31].
Next, we implement an orbital field H ¼ Hez in the

Landau gauge A ¼ −yHex [Figs. 1(b) and 1(c)]. This has
two main effects: First, bulk subbands evolve into Landau
levels (LLs) for lH ≪ Ly. All LLs with n ≠ 0 come in pairs
of energy E�

n , except for the single n ¼ 0 LL with energy
E0 [32]. This causes an asymmetry in the spectrum further
discussed in Ref. [33]. Second, the orbital field gradually
lowers the energy of the Dirac point so that it enters the
valence band atH ¼ Hscat. The evolution of the Dirac point

is determined by EDðHÞ ≈ EDð0Þ − geffμBH, where geff ¼
m0vxLy=ℏ [31]. Here, vx is the edge state velocity, μB is the
Bohr magneton, m0 is the electron mass, and EDð0Þ is the
Dirac point energy atH ¼ 0. Note that the QAH edge states
survive (up to finite size gaps) even for large H [Fig. 1(c)]
since they are protected from hybridization with bulk states
by their wave function localization.
Effective action.—To understand the survival of the

QAH edge states, we derive the corresponding low energy
effective bulk Lagrangian Lbulk

eff by computing the particle
number in the continuum or bulk model [15,33],

hNiμ ¼
1

2

Z
dx

X
α

h½ψ†
αðxÞ;ψαðxÞ�iμ ¼ hN0iμ −

ηH
2
:

Here, h� � �iμ denotes the expectation valuewith respect to the
chemical potential μ, ψðxÞ is a field operator, and N0 is the
fermion number operator, counting the number of filled or
empty states with respect to the charge neutrality point. The
last term is the spectral asymmetry ηH [15], quantifying the
difference in the number of positive and negative eigenvalues
of our system. From Lorentz covariance, one can then
determine the induced three current jμind ¼ σxyϵ

μνρ∂νaρ
arising as a response to a small perturbing field aμ, applied
on top of the underlying orbital field H. Here, j0ind is the
induced bulk charge density, and j1;2ind is the induced bulk
current density in the x and y direction, respectively. Since
jμind ¼ δSbulkeff =δaμ with Sbulkeff ¼ R

d3xLbulk
eff , we can compute

the corresponding effective bulk Lagrangian which is one of
the main results of our Letter (further details are given in
Ref. [33]):

Lbulk
eff ðμ; HÞ ¼ σxyðμ; HÞ

2
ϵμνρaμ∂νaρ; ð3Þ

where ϵμνρ is the Levi-Civita symbol. This is a topologicalCS
term [34] with quantized Hall conductivity

σxy ¼
e2

2h
κQAH −

e2

2h
κ0QHΘðjμþD=l2Hj − jM − B=l2HjÞ

−
e2

h

X∞
s¼�; n¼1

sκQHΘ½sðμ − Es
nÞ�: ð4Þ

According to their physical origin, we separated σxy into

κQAH ¼ sgnðM − B=l2HÞ þ sgnðBÞ; ð4aÞ

κ0QH¼ sgnðeHÞsgnðμþD=l2HÞþ sgnðM−B=l2HÞ; ð4bÞ

κQH ¼ sgnðeHÞ: ð4cÞ

CS terms arise if parity and time-reversal symmetry are
broken [16,34]. In our case, they are therefore induced
by the mass terms M and Bk2, as well as by the orbital
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FIG. 1. Band structure of a QAH insulator in orbital fields
H (black lines) for M ¼ −25 meV, B ¼ −1075 meV nm2,
D ¼ −900 meVnm2, and A ¼ 365 meV nm. χðL=RÞ and
ξðL=RÞ depict QAH and QH edge states at the left and right
boundary. (a) Spectrum for H ¼ 0 at half filling with chiral QAH
edge states traversing the bulk gap. The inset depicts the sample
geometry. (a)–(c) Evolution of the spectrum and its filling with
increasingH, where empty (filled) states are marked in blue (red).
(d) Analogous analysis for an initially filled conduction band LL.
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field H [33,35]. We distinguish two types of CS terms: The
first type, Eq. (4a), is defined by its exclusive relation toM
and Bk2, resulting in the violation of the Onsager relation.
This term is a consequence of the parity anomaly at H ¼ 0,
which requires that a single, parity invariant Chern insu-
lator cannot exist in ð2þ 1ÞD [16]. Its special origin is
reflected by the fact that Eq. (4a) is solely determined by
the spectral asymmetry ηH ¼ 2n0sgnðeHÞκQAH, where n0
is the LL degeneracy. It is a property of the entire
eigenvalue spectrum and, hence, does not come along with
a Heaviside function. The second type of CS terms,
Eqs. (4b) and (4c), describes conventional QH physics,
generated by an orbital field, as indicated by their sgnðeHÞ
dependence. In contrast to the first type, each of these CS
terms is related to a single LL, reflected by the Heaviside
functions. They can only contribute to the Hall conductivity
if jμþD=l2Hj > jM − B=l2Hj.
In order to derive the corresponding edge theories, we

have to add a new degree of freedom to Lbulk
eff . This can be

inferred from the fact that any CS term changes by a total
derivative under a local gauge transformation, Lbulk

eff →
Lbulk
eff þ δLbulk

eff , causing a violation of charge conservation,
∂μj

μ
ind ≠ 0j∂Ω, at the boundary ∂Ω [34,36]. To cancel this

U(1) anomaly, we must enlarge our description by an
effective edge Lagrangian L∂Ω

eff , which restores gauge
invariance via anomaly cancellation between the edge
and bulk (Callan-Harvey mechanism) [36–39]:

∂μj
μ
tot ¼ ∂μðjμind þ jμL þ jμRÞ ¼ 0

⇒ ∂μj
μ
L=R ¼ σxy

2
δðy − yL=RÞϵ2νλ∂νaλ ¼ −∂μj

μ
ind; ð5Þ

where jμL=R symbolizes induced currents at the left or right
edge of the stripe geometry. This procedure is the field-
theoretical analog to the bulk-boundary correspondence
[40]. Equation (5) implies that an orbital field induces
charge accumulation in the bulk which is compensated by a
charge depletion at the edges (fixed total charge)
[17,41,42]. The amount of induced bulk charge is given
by j0ind ¼ σxy∇ × a. From Eq. (5), one can deduce

L∂Ω
eff ¼ LL

effδðy − yLÞ þ LR
effδðy − yRÞ;

LL=R
eff ¼ χ†i

�
∂t ∓ h

e2
κQAHDx

�
χ ð6aÞ

þξ†0i

�
∂t∓ h

e2
κn¼0
QH Dx

�

×ξ0ΘðjμþD=l2Hj− jM−B=l2HjÞ ð6bÞ

þ
X∞
n¼1
s¼�

sξ†ni

�
∂t ∓ h

e2
κnQHDx

�
ξnΘ½sðμ − Es

nÞ�; ð6cÞ

where χðξnÞ defines QAH (QH) edge states and
Dx ≡ ∂x þ ieaμ=ℏ. Equation (6a) is linked to Eq. (4a)

and characterizes QAH edge states, persisting in orbital
fields. The QAH edge states are not bound to a specific LL
(no Heaviside function) but instead bridge the gap between
valence and conduction band. This finding is in accordance
with our band structure calculations, shown in Fig. 1. Since
Eq. (6a) is connected to the spectral asymmetry ηH, charge
pumping via anomaly cancellation can occur from the
QAH edge states into any LL. This pumping mechanism is
therefore a signature of the parity anomaly and can, in
general, exist until the Dirac mass gap is eventually closed
at the critical field [Eq. (4a)]

Hcrit ¼ sgnðeHÞℏ
e
M
B
: ð7Þ

In contrast, Eqs. (6b) and (6c) are related to Eqs. (4b) and
(4c) and define QH edge states. These states are bound by
single LLs and charge flow appears only between edge
states and their associated LL.
Charge pumping.—To highlight the differences in the

charge pumping betweenQAH andQH phases, we consider
here an impurity-free system and comment on (in)elastic
scattering effects in the next section. We simulate the
evolution of the charge distribution as a function of the
orbital field by solving the time-dependent Schrödinger
equation.As in typical experiments, we keep the total charge
(not chemical potential) constant in our simulations [25,43–
45]. In particular, we consider a vector potential AðtÞ ¼
AðtiÞ þ aðtÞ with t ∈ ½ti ¼ 0; tf�, where AðtiÞ is a time-
independent background field and aðtÞ ¼ −yHðtÞex is a
time-dependent perturbation. At initial time ti, the system is
described by the solutions of the Schrödinger equation
jψ j;kxðtiÞi, where j labels the jth subband. For t > ti, the
perturbation is switched on and each initially occupied
state, with j ≤ jmax and k ≤ kmax, evolves under unitary
time evolution to jψ j;kxðtÞi [46]. The quantities jmax and kmax

are determined by the initial chemical potential μ. Linearly
increasing the orbital fieldwith time,we trace the occupation
of states in each instantaneous spectrum, defined by the
time-independent Schrödinger equation HðtÞjϕi;kxðtÞi ¼
Ei;kxðtÞjϕi;kxðtÞi. Their occupation probabilities are deter-

mined by Pi;kxðtÞ ¼
Pjmax

j¼0 jhψ j;kxðtÞjϕi;kxðtÞij2 [33]. At ti,
the ground state for (I), the QAH phase is determined by
AðtiÞ ¼ 0 with μ located at the Dirac point [Fig. 1(a)],
whereas for (II), the QH phase, a finite background field
AðtiÞ ¼ −yH0ex has to be applied and μ is placed above the
first LL [Fig. 1(d)]. The numerical results, presented in
Figs. 1 and 2, are independent of the time scale in
which HðtÞ is ramped up, provided that tmin

f ≪ tf ≪ tmax
f .

The lower bound prevents excitations across bulk gaps Eg

and is therefore determined by tmin
f ≡ ℏ=Eg ∼ 10−13 s. For

H > Hscat, the upper bound comes from the requirement to
overcome hybridization gaps forming between the QAH
edge states and bulk LLs. As long as these hybridization
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gaps are finite size gaps, exponentially suppressed by the
system size, tmax

f tends to infinity [33].
Let us now discuss the numerical results, starting with

the QAH phase under initial condition (I). Increasing HðtÞ
with time, the occupation of the eigenstates and the induced
charge carrier density j0indðx; tÞ ¼ −enindðx; tÞ evolve as
shown in Figs. 1(a)–1(c) and Fig. 2 with nindðx; tÞ ¼P

i;kx Pi;kxðtÞjϕi;kxðx; tÞj2 − nback, where nback ensures that
nindðx; tiÞ ¼ 0. Starting from a flat (zero) charge density
distribution, an increase of HðtÞ causes a net charge flow
from the QAH edge states (charge depletion) into all
valence band LLs (charge accumulation). Since our system
is a bulk insulator, this redistribution of charges is driven by
polarization effects. As a function of the orbital field all
occupied wave functions shift their spectral weight, effec-
tively giving rise to the charge redistribution shown in
Fig. 2. During this process, all valence band LLs, including
the n ¼ 0 LL, remain filled. As illustrated in the inset of
Fig. 2, this causes a linear increase of the bulk charge with
j0ind ¼ σxy∇ × a ¼ κQAHHðtÞ. Since this type of pumping
is bound to the existence of the QAH edge states, it can
only exist for H < Hcrit [Eq. (7)]. These results are
consistent with our conclusions based on the Callan-
Harvey mechanism following from Eq. (5).
In contrast, our results for the QH phase under initial

condition (II) are shown in Fig. 1(d) and in the inset of
Fig. 2. In agreement with our field-theoretical approach, we
find that the bulk charge originates purely from the
associated QH edge states, implying a saturation of the
charge accumulation already for small orbital fields. This is
therefore further evidence that the QAH edge states are
related to a distinct CS term, which is connected to the
spectral asymmetry ηH and not to a single LL.
Experimental signatures.—We have so far considered an

impurity-free system. What are the consequences of taking
disorder and, therefore, (in)elastic scattering into account?

As long as the Dirac point is above the n ¼ 0 LL, i.e., for
H < Hscat, the system is in its ground state. Scattering
cannot cause relaxation of the induced bulk charge and,
hence, disorder cannot affect the results of Figs. 1(b) and 2.
The hallmark of the QAH effect is a quantized Hall plateau
with σxy ¼ κQAH whose length scales with Hscat ∼ L−1

y .
This is depicted by region I in Fig. 3 and follows from
geff ∼ Ly [33]. For H > Hscat, the system is driven into a
state with no common chemical potential, whose signature
is a selective population of states (charge inversion), shown
in Fig. 1(c). This charge inversion is protected by momen-
tum conservation, since direct relaxation processes, such as
spontaneous emission, are exponentially suppressed by the
spatial localization of the wave functions. However, since
realistic systems are rather imperfect, in(elastic) scattering
between occupied QH and unoccupied QAH edge states
facilitate momentum and energy relaxation as indicated by
region II in Fig. 3. As a result, the charge inversion relaxes
eventually, until a common chemical potential has set in. In
this new ground state, counterpropagating QAH and QH
edge states coexist at a single boundary. For instance in the
inset of region II, at the right boundary, the QAH edge state
has a positive velocity, while the QH edge state has a
negative velocity. Similarly to Ref. [47], which uses the
Landauer-Büttiker formalism [48,49], we expect deviations
from a perfectly quantized Hall plateau arising from
scattering between QH and QAH edge states. When the
transmission probability Ti;j between contacts i and j on a
typical Hall bar is symmetric, meaning Ti;iþ1 ¼ Tiþ1;i, we
expect a σxy ¼ 0 plateau [33]. If scattering processes
between the coexisting edge states microscopically differ
on both edges of the Hall bar, deviations from a perfect
quantization arise (wiggly line in Fig. 3). In contrast for
Ti;iþ1 ≠ Tiþ1;i, the average value of σxy can significantly
deviate from zero. Such direction-dependent transmission
probabilities can result from a large charge puddle
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FIG. 3. Schematic evolution of σxy for a QAH insulator in orbital
fields in the presence of disorder. Insets schematically illustrate the
underlying band structure according to Figs. 1(a)–1(c) (same color
code). In region II, scattering processes between counterpropagat-
ing QH ξðL=RÞ (red) and QAH χðL=RÞ (blue) edge states allow
for momentum and energy relaxation.

FIG. 2. Evolution of nindðx; tÞ in orbital fields, corresponding to
Figs. 1(a)–1(c). An increase of H causes charge depletion (blue)
at the edges and charge accumulation (red) in the bulk. The
inset compares the induced bulk particle number NindðtÞ ¼R
dxnindðx; tÞ between the QAH (red) and the QH phase (green).
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density [33] (diffusive regime) which is typically present in
large (Hg,Mn)Te Hall bars [50–52]. Finally, for H > Hcrit,
the Dirac mass gap is closed and σxy vanishes as indicated
by region III in Fig. 3.
Realization.—Typical materials in which this crossover

should be observed include ðHg;MnÞTe=CdTe quantum
wells, described by the BHZ model [20,21,25,53]. In the
discussion above, we assumed that the spin-down block of
the BHZ model is trivial and, hence, does not qualitatively
affect the discussed physics. Nevertheless, analogous
equations for the spin-down block can be derived replacing
ðM;BÞ → ð−M;−BÞ. Zeeman (gz) and exchange (Gex)
terms can be incorporated, replacing M → M � gðHÞ,
where gðHÞ≡ gzH � GexðHÞ [21] and þð−Þ applies to
the spin-up(down) block. In the full BHZ model, g ≠ 0
breaks time-reversal symmetry and drives the system into
the QAH phase if ðM þ g − B=l2HÞðM − g − B=l2HÞ < 0,
extending the definition of QAH insulators to orbital
fields [21]. Since the exchange interaction in (Hg,Mn)Te
is paramagnetic [54], a finite orbital field is needed to
drive the system into the QAH phase. In the full BHZ
model, the spin-down block causes an additional transition
from the QSH phase to region I in Fig. 3. In Bi-based QAH
insulators, one should be able to observe similar transitions
as shown in Fig. 3, given that signatures of both the QH and
the QAH effect are observed at relatively small orbital
fields [26–29].
Conclusions.—The field theoretical analysis of QAH

insulators in orbital fields allows us to explain the very
unconventional findings in band structure calculations
based on the parity anomaly. In particular, we reveal three
novel transport features which are all fundamentally based
on the parity anomaly: a violation of the Onsager relation; a
peculiar type of charge pumping with increasing orbital
field; and, for large fields, the emergence of counter-
propagating QH and QAH edge states. Together these
signatures highlight the different physical origin of the
topology of QH and QAH phases, making them distin-
guishable even though they are described by the same
Chern number. As a fingerprint of these features, we predict
a transition from σxy ¼ −e2=h (QAH effect) to a noisy QH
plateau with increasing orbital fields, whose average value
depends on details of the QH-QAH edge state scattering.
The experimental verification of our theoretical predictions
in (Hg,Mn)Te quantum wells is underway [25]. In the
future, it would be interesting to study signatures of
quantum anomalies beyond the BHZ model and analyze
microscopic signatures of counterpropagating QH and
QAH edge states therein.
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