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Aided by fully kinetic simulations, spacecraft observations of magnetic reconnection in Earth’s
magnetotail are analyzed. The structure of the electron diffusion region is in quantitative agreement with
the numerical model. Of special interest, the spacecraft data reveal how reconnection is mediated by
off-diagonal stress in the electron pressure tensor breaking the frozen-in law of the electron fluid.
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Magnetic reconnection is the process that breaks and
rearranges the connectivity of magnetic field lines in
plasmas [1]. Plasmas, which are generally excellent con-
ductors of electrical currents, are abundant throughout the
universe, and magnetic reconnection is believed to be
fundamental to a range of phenomena in astrophysical
and laboratory settings where large scale current layers
become unstable and explosively release their magnetic
field energy [2,3]. The plasma frozen-in law of magneto-
hydrodynamics (MHD) states that a perfectly conducting
plasma with ion fluid velocity ui cannot support an electric
field in its own frame of reference, i.e., Eþ ui × B ¼ 0.
During reconnection, the inertia of the ions breaks this law
within ion diffusion regions (IDRs) at the length scale,
di ¼ c=ωpi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=ðμ0nee2Þ

p
. For the magnetotail (con-

sidered here) this ion inertial scale is relatively large,
di ≃ 103 km. Reconnection, however, also requires the
decoupling of the electron motion from the magnetic fields,
and theoretical studies of magnetic reconnection are often
concerned with how the more restrictive frozen-in law
E0 ≡ Eþ ue ×B ¼ 0 for the electron fluid with bulk
velocity ue, is violated within much smaller electron
diffusion regions (EDRs).
Theories have been proposed advocating that 3D effects

or turbulence may cause local suppression of the effective
conductivity, permitting reconnection to proceed at the fast
rates observed [4]. However, under conditions typical of
magnetospheric reconnection, 3D effects have been found
to be relatively unimportant for suppressing the conduc-
tivity, even in asymmetric current sheets where these effects
are stronger [5–7]. Rather, 2D and 3D kinetic models
suggest that E0 ≠ 0 can be caused by stress in the electron
pressure tensor becoming important when the spatial scale
length of the EDR reaches the electron inertial scale,
de ¼ c=ωpe ≃ di=43 [8–13].

NASA’s Magnetospheric Multiscale (MMS) mission
[14] was specially designed to characterize the fine scale
structure of magnetic reconnection in Earth’s magneto-
sphere and has successfully recorded reconnection events
for a range of environments in the magnetosphere [15].
These include asymmetric reconnection events in the day-
side magnetopause [16], where electron beams oblique to
the magnetic lines of force break the frozen-in law [17].
However, so far, no direct observations have been reported
on how the electron frozen-in law is broken during
symmetric reconnection in the magnetotail. In this Letter
we use fully kinetic simulation results to aid a detailed
analysis of the EDR encounter reported by Torbert et al.
[18], and examine the mechanism responsible for breaking
the electron frozen-in law.
Similar to previous studies of spacecraft reconnection

events [19,20] our analysis is aided by kinetic simulations,
providing a first principles model for the reconnection
dynamics. At each time step of a simulation, the velocities
and positions for a large number of numerical particles (we
used ≃1010) are updated according to Newton’s second law
applied with forces from the electromagnetic fields. The
fields, in turn, are computed self-consistently from the
distributions of charges and currents carried by the particle
populations. The simulation domain is spanned by the L
and N coordinates. For numerical tractability we apply the
common so-called 2.5D assumption where fields and
particle flows are 3D vector quantities but all quantities
are assumed to have vanishing gradients, ∂=∂M ¼ 0, in the
direction, M, normal to the LN plane.
The simulation performed with the VPIC code [21]

implemented the full proton to electron mass ratio
mi=me ¼ 1836, permitting a direct mapping between all
dimensionless VPIC units and spacecraft units. By imposing
that the fundamental quantities of a quasineutral plasma are
equivalent in the two systems and applying two scaling
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factors to match the VPIC and MMS electron number
densities and temperatures, there then exist a unique
mapping from all dimensionless VPIC units to the units
applied by the MMS spacecraft [22]. This mapping
facilitates the presented quantitative comparison between
the spacecraft observations and simulation data.
An important part of the spacecraft data analysis is to

establish the appropriate LMN coordinate basis of the
reconnection event. Here the reconnecting magnetic field
component is in the L direction, while M again is the out-
of-plane direction often identified by a search for a
direction where plasma parameters have minimum variance
[23]. However, because the MMS spacecraft did not sample
the upstream plasma (located at large jNj) the standard
methods for establishing the LMN basis of the event are not
accurate. Instead, we applied an optimization approach
aided by the kinetic simulation [22], yielding the basis
given in the caption of Fig. 1.
The time histories for a range of quantities recorded

during the MMS encounter with the EDR on July 11, 2017
are shown in Figs. 1(a)–1(k), where the red (blue) lines
represent observations by MMS1 (MMS3). Estimated
trajectories of the MMS spacecraft through profiles of a
fully kinetic simulation are shown in Figs. 2(b)–2(e).
Evaluating numerical quantities along these trajectories
yields the cuts through the simulation data shown in
Figs. 1(l)–1(v). Uncertainty ranges for both MMS and
VPIC data are indicated in pink. Outside the reconnection
region the gradient length scale is in general larger than the
spacecraft separation and differences between the fully
independent measurements by the various spacecraft can be
applied for a conservative error estimate. Thus, for each
MMS quantity, SMMS, we estimate the uncertainty as the
root-mean-square (RMS) of differences between the signals
of MMS1 and MMS3 during the interval −3s < t < −2s
just outside the EDR within the tailward exhaust, i.e.,
ΔSMMS ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðSMMS1 − SMMS3Þ2it

p
. For the VPIC data the

main source of error is due to theΔN ≃ 0.6de uncertainty in
the N coordinate along the inferred MMS trajectory, such
that ΔSVPIC ≃�ΔN∂S=∂N.
The trajectory of the MMS spacecraft through the

simulation was reconstructed mainly using BL and BN from
MMS1 [red lines in Figs. 1(d) and 1(f)] in relation to the VPIC
profiles in Figs. 2(b) and 2(c), and included an optimization
process [22] determining other free parameters of the
problem (see caption). The displacement of MMS3 in the
N direction relative to the other spacecraft amounts to
12 km ∼ 0.4de, and is indicated by the slight separation
of the black and red trajectories in Figs. 2(b) and 2(e). The
fluctuations inN along the trajectories, slow compared to the
electron dynamics, are dictated by the variations in BL.
Figure 2(d) shows color contours of the temperature ratio

Tek=Te⊥, where k and ⊥ refer to the directions parallel and
perpendicular to the local magnetic field. The EDR with
Tek=Te⊥ ≃ 1 separates the two inflow regions each with

Tek ≃ 5Te⊥. The dynamics responsible for Tek ≫ Te⊥ are
well understood [25–27], tied to the parallel acceleration
potential Φk defined in Ref. [28] and the trapped orbit
dynamics that are both displayed in Fig. 2(a) [29–32]. The
spike of pressure anisotropy in Figs. 1(c) and 1(d) is

FIG. 1. (a)–(k) MMS1 (red lines) and MMS3 (blue lines)
measurements of a range of quantities during the July 11, 2017
EDR encounter, with t ¼ 0s corresponding to 22∶34:00 UT.
The raw data provided by MMS are translated to the LMN
coordinates of the event determined in the Supplemental
Material [22]. In geocentric solar ecliptic (GSE) coordinates,
our unit vectors ½L;M;N� are ½0.94;−0.35;−0.03; 0.32;
0.90;−0.33; 0.15; 0.30; 0.94�. (l)–(v) Matching simulation quan-
tities evaluated along the trajectories shown in Fig. 2. Error
estimates are shown in pink and the VPIC results are translated
to MMS units and plotted with axis settings identical to those
of (a)–(k).
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consistent with the MMS trajectory in Fig. 2(d) briefly
making contact with the inflow. The level of pressure
anisotropy is consistent with a regime I event [33], where
the marginal fire hose condition neðTek − Te⊥Þ ≃ B2=μ0 is
approached along the edge of the EDR, driving the
extended electron outflow jets [26].
Quantitative agreement is also observed between the

MMS and VPIC profiles of the electric fields, including the
sharp details of EL in Figs. 1(g) and 1(r) for t ≃ 1s. The EN
MMS measurement in Fig. 1(i) reaches a larger maximum
value than seen in the simulation profiles in Fig. 1(t).
Nevertheless, the measurement of EN < 0 by MMS3 at
t ≃ 4 s is consistent with the profiles of EN in Fig. 2(e)
where EN abruptly changes sign at N ¼ 0, indicating (in
agreement with the BL measurements) that here MMS1 and
MMS3 are straddling the middle of the reconnection
layer, N ¼ 0.

Spacecraft measurement of E is challenging and there is
often some uncertainty associated with the direction of E.
The strong EN inside the EDR can therefore influence the
measurements of the weaker EM and EL components. In
particular, by including an additional 5% of jEN j on the EM
uncertainty estimates we may account for the deviation
between the EM traces recorded by MMS1 and MMS3. The
EM measurements then also agree with the constant level of
EM ≃ 3 mV=m seen in the VPIC run within the range of
uncertainty, and values reported for EM in Refs. [34,35].
Finally, quantitative agreement is also observed for the
electron flow profiles in Figs. 1(l), 1(k), 1(u), 1(v), where
the MMS trajectory largely missed the electron jets in the
negative L direction.
Next, with Figs. 3 and 4 we seek to demonstrate how the

MMS spacecraft directly captured the physical mechanism
responsible for breaking the frozen-in law discussed above,
E0 ¼ Eþ ue ×B ¼ 0. At the center of the reconnection
site the lines of the in-plane magnetic field meet in an
x configuration, where the center point is known as the
x point. In 3D the x points form a continuous line denoted
the x line, which in our 2D representation is the line in the
M direction characterized by L ¼ N ¼ 0 [see Fig. 2(c)].
The electric field along the x line is of special importance
as, by Faraday’s law, it describes the rate at which magnetic
flux convects across this line defining the magnetic
topology. E along the x line (in our case EM) is therefore
a direct measure of the reconnection rate.

FIG. 2. Numerical profiles of eΦk=Te,BL,BN Tek=Te⊥, andEN .
Trapped electron trajectories are shown in (a), while the recon-
structed path of the MMS spacecraft through the simulation is
shown by the red (MMS1) and black (MMS3) lines in (b)–(e).
Length scales are normalized by de ≃ 29 km calculated using
the VPIC density n=n0 ¼ 0.75 observed at the x line. Here n0 is
the initial density in the center of the simulation domain. For the
simulation, open boundary conditions were applied [24] on a
domain of total size of 4032 × 4032 cells = 10di × 10di ≃
428de × 428de, initialized with approximately 800 particles per
species per cell. Other parameters determined to be consistent with
the observations [22] include ratios of upstream electron and ion
pressure to magnetic pressure of βe∞ ¼ 0.045 and βi∞ ¼ 0.45.
Also, our optimization scheme [22] led to the inclusion of a small
out of plane guide magnetic fieldBg=B0 ¼ 0.006, here normalized
by the initial upstream reconnection magnetic field.

FIG. 3. In (a) and (b) the MMS and VPIC profiles of PLM are
shown in the format of Fig. 1. In (c) the blue line is the raw PMN
signal provided by MMS3, while the red line is the same signal
low-pass filter at ≲4 Hz [the same filter was also for the lines in
(a)]. In (d) low-pass filtered signals of PMN are shown for all
MMS spacecraft. Given the VPIC structure of ∂PMN=∂L in (e) and
the MMS constellation in (f), from the lines in (d) we can deduce
a MMS profile of ∂PMN=∂N and estimate its error range [see text
and Fig. 4(e)].
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A momentum equation for the electron fluid that retains
additional physical effects similar to those described by the
Navier-Stokes equation of regular fluid mechanics can be
obtained from plasma kinetic theory. Under collisionless
conditions and neglecting partial time derivative terms, this
generalized Ohm’s law takes the form

Eþ ue × Bþ 1

ne
∇ · pe þ

me

e
ue ·∇ue ¼ 0: ð1Þ

Here the kinetic effects are retained through the
term involving the electron pressure tensor pe¼
me

R ðv−ueÞðv−ueÞfeðvÞd3v. The last term, meue ·∇ue=e,
is the electron inertial force against acceleration proportional
to the convective time derivative of meue.
For the present case of symmetric reconnection the

electron inertia vanishes at the x line. For 2D configurations
Eq. (1) then implies that ð∇ · pÞM ¼ ∂peLM=∂Lþ
∂peMN=∂N, are the only two terms that can break the
frozen-in law, permitting EM to remain finite along the
x line. The MMS and VPIC reconstructed traces of peLM are
shown in Figs. 3(a) and 3(b), both including a steady ramp
of ΔpeLM ¼ 3 pPa over a distance of ΔL ≃ 15di ≃ 500 km
centered on the inner reconnection region at t ≃ 2.5 s.
We then have ð∂peLM=∂LÞ=ðenÞ ≃þ1 mV=m adding in
Eq. (1) to the value of EM.
To evaluate ∂peMN=∂N and its experimental uncertainty

we consider data from all four spacecraft. In Fig. 3(c) the
blue line is the raw peMN signal of MMS3, while the red

line provides the low-pass filtered ð≲4 HzÞ signal reducing
the noise caused in part by limited counting statistics on the
MMS electron detectors. This filtered signal is repeated in
Fig. 3(d) together with those recorded by MMS1,2,4. The
differences between these signals are related to the spatial
constellation of the MMS tetrahedron which in Fig. 3(f) is
projected on the LN plane. Given MMS1,2,4 all have small
N separation their recorded value of peMN should be similar
in regions where ∂peMN=∂L is small. Intervals of
∂peMN=∂L ≃ 0 are identified by the magenta bars in the
VPIC profile in Fig. 3(e) and, indeed, during these intervals
[highlighted by the similar magenta bars in Fig. 3(d)]
MMS1,2,4 recorded values of peMN that agree within
�0.05 pPa, providing a direct error estimate on the
peMN measurement inside the EDR. In turn, this error
estimate agrees with that provided by the RMS method
described above.
In Fig. 3(d) the red line of peMN by MMS3 displays a

statistically significant deviation from the lines of the other
spacecraft. Given the ΔN ≃ 12 km separation of MMS3
relative toMMS1,2,4we interpret this deviation as ameasure
ofΔN∂PeMN=∂N. At the inner EDR, we observeΔPeMN ¼
−0.22� 0.05 pPa such that here ð∂PeMN=∂NÞ=ne≃
−0.22 pPa=ð12 km 0.032 cm−3 1.6 × 10−19 CÞ ≃ −3.6�
0.8 mV=m,with the full trace of ð∂PeMN=∂NÞ=ne shown in
Fig. 4(e). In addition, the red-blue-red bars in Fig. 3(d) and
Figs. 4(d)–4(f) indicate where ∂peMN=∂N is positive-
negative-positive, with the negative interval centered on
the inner EDR.
The VPIC profiles of the terms in Eq. (1) are shown in

Fig. 4. In panel (a) the twomost negative blue regions where
ðEþ ue ×BÞM ≃ −5 mV=m are caused by the strong out-
flow electron jetsmoving faster than themagnetic field lines.
Profiles of the electron inertia term and stress component
ð∂peLM=∂LÞ=ðenÞ are shown in (b) and (c), respectively.
While these profiles have interesting structures they are
relatively unimportant within the inner EDR to the momen-
tum balance of Eq. (1). This is in contrast to the profile of
ð∂PeMN=∂NÞ=ne shown in (d), which is anticorrelated with
the profile in (a), such that their sum is approximately zero
(not shown) throughout the region. Evaluating the profile in
(d) along the MMS trajectory we obtain the VPIC recon-
structed trace shown in (f).
We can now combine the evidence from the MMS data

revealing the mechanism that breaks the electron frozen-in
law. As was the case for all other quantities examined
above, in Figs. 4(e) and 4(f) we observed a quantitative
agreement between the MMS and the VPIC signals for
ð∂PeMN=∂NÞ=ne. In particular, within the inner EDR both
MMS and VPIC data display values which are significantly
beyond their range of uncertainty [blue shaded regions in (e)
and (f)]. Consistent with force balance along the x line the
combined force (per charge) of EM þ ð∂PeLM=∂LÞ=ne ¼
ð3� 0.8Þ þ ð1� 0.2Þ ¼ 4� 1 mV=m is offset by
ð∂PeMN=∂NÞ=ne ≃ −3.6� 0.8 mV=m, hereby breaking

FIG. 4. (a)–(d) Color contours of terms important for the
electron momentum balance in the M direction. (e),(f) Matching
profiles of MMS and VPIC pressure tensor term ð∂peMN=∂NÞ=ne,
where the MMS profile is obtained from the curves in Fig. 3(d).
The ranges of error are shown in pink, determined as described in
the text, and are consistent with quantitative agreement between
MMS and VPIC signals within the inner EDR.
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the frozen-in law. The error ranges are conservatively based
on the pink shaded ranges in the figures.
In summary, a detailed analysis of MMS observations of

symmetric magnetic reconnection in Earth’s magnetotail is
presented and compared to results from 2D fully kinetic
simulations. With the numerical run applying the full
proton-electron mass ratio, mi=me ¼ 1836, the simulation
units can be mapped directly to the units of the MMS
measurements. In turn, for fixed LMN coordinates the BL
and BN measurements then determine the MMS trajectory
through the simulation domain, yielding the demonstrated
quantitative agreement for all simulation parameters com-
pared with the observations. Based on an examination of
the electron force balance equation, it is concluded that the
off-diagonal stress term ð∂peMN=∂NÞ=ne is responsible for
breaking the frozen-in condition for the electrons and is
consistent with rate of reconnection in this naturally
occurring magnetotail event.
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