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Mixing of passive scalars in compressible turbulence does not obey the same classical Reynolds number
scaling as its incompressible counterpart. We first show from a large database of direct numerical
simulations that even the solenoidal part of the velocity field fails to follow the classical incompressible
scaling when the forcing includes a substantial dilatational component. Though the dilatational effects on
the flow remain significant, our main results are that both the solenoidal energy spectrum and the passive
scalar spectrum assume incompressible forms, and that the scalar gradient essentially aligns with the most
compressive eigenvalue of the solenoidal part, provided that only the solenoidal components are
consistently used for scaling. A slight refinement of this statement is also pointed out.
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A defining feature of turbulence is the ability to mix sub-
stances with orders of magnitude greater effectiveness than
molecular mixing. The subject has been studied extensively
[1] when the mixing agent is incompressible turbulence
because it is a fundamentally important problem in its own
right and a good paradigm formany practical circumstances.
However, there are critically important applications from
astrophysics to high-speed aerodynamics in which com-
pressibility needs to be explicitly considered. Including
compressibility renders inapplicable the Reynolds number
scaling laws [2,3] that are used extensively in incompress-
ible turbulence. This paper shows one successful way of
incorporating compressibility explicitly. We show by three
examples that the standard incompressible laws work in the
compressible case by rescaling the appropriate variables.
The initial attempt to include compressibility was made

through a suitably defined Mach number as an additional
parameter. For the ideal case of homogeneous isotropic
turbulence in a cubic boxwith periodic boundary conditions,
this Mach number, Mt ¼ u0=hci, where u0 ¼ hu2i i1=2, ui
being the velocity in the Cartesian direction i, and the
angular brackets indicate a suitable average.However, as has
been pointed out by Ni [4], Mt is not adequate when the
velocity field has a strong dilatational component. (By
construction,Helmholtz decomposition leads to a solenoidal
part, us, which represents vortical contribution and satisfies
the incompressibility condition, and a dilatational part, ud,
which represents the irrotational component.) Indeed, DNS
data with different types of large scale forcing, such as pure
solenoidal forcing [5–7], homogeneous shear forcing [8],
dilatational forcing [9,10], and thermal forcing [11] have
revealed that the dilatational flow field characteristics

depend on the details of forcing, even for fixed Mt.
Further progress has been made recently [12] by adding
yet another parameter, namely, δ, which is the ratio of root-
mean-square (rms) dilatational velocity to the solenoidal
counterpart. The improved physical understanding that
arises from Ref. [12] can be used to assess the scaling of
the passive scalars in compressible turbulence.
Even though the inadequacy of classical scaling in

compressible turbulence has been pointed out as just
described, it has not been demonstrated using data for a
variety of forcing schemes with a varying dilatational
component for both velocity and scalar fields. We show this
here conclusively by using the data from direct numerical
simulations (DNS) of compressible Navier-Stokes equations
in a periodic box yielding homogeneous and isotropic
turbulence, and span the following conditions: the micro-
scale Reynolds number Rλ ≡ hρiu0λ=μ, where hρi is the
mean density, λ is the Taylor microscale and μ the mean
dynamic viscosity, ranges from38 to 165; the turbulentMach
number, Mt, varies between 0 and about 0.6; the Schmidt
number Sc ¼ μ=½hρiD�, where D is the diffusivity of the
scalar, is unity. A particularly important point is that the
forcing at low wave numbers contains a strong dilatational
component as well, with δ ranging from 0 to 7.5. Figure 1
shows the wide range of compressibility conditions covered
for the scalar field in the parameter spaces of Rλ, δ, andMt.
The first instance of the inadequacy of incompressible

scaling is the energy spectrum which, according to
Ref. [13], follows the relation EðkÞ ¼ Chϵi2=3k−5=3 in
the inertial range, where C is the Kolmogorov constant,
k is the wave number, and hϵi is the mean total energy
dissipation. The energy spectrum has the property that
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R
∞
0 EðkÞdk ¼ hu2i=2; hu2i ¼ huiuii. In Fig. 2(a) we see
that, unlike in incompressible turbulence, there is no
collapse of spectral data when normalized according to
Ref. [13]. This is not surprising: it has been pointed out
already in theories [14–16] and simulations [5,7,9,10] that
the dilatational component of energy can take on a wide
range of behaviors and can depart from the classical
Kolmogorov scaling.
As an improvement, it has been suggested [5,7] that the

solenoidal part of the energy spectra ð∇ · us ¼ 0Þ does
scale according classical Kolmogorov scaling; the basis for
this claim comes from solenoidally forced DNS. However,
this result does not hold when the forcing has a strong
dilatational component, as shown in Fig. 2(b), where the
Kolmogorov-compensated solenoidal energy spectra
EsðkÞ, defined such that

R∞
0 EsðkÞdk ¼ hu2si=2, does not

scale when the forcing includes a dilatational part. The
second instance of this inadequacy is the scalar spectrum.
In incompressible turbulence, its behavior is reasonably
well understood at the phenomenological level [1,17–23].
For unity Schmidt number, the appropriate normalization
for the passive scalars is the Obukhov-Corrsin scaling

EϕðkÞ ¼ C0hϵϕihϵi−1=3k−5=3, where Eϕ is defined such thatR
∞
0 EϕðkÞdk ¼ hϕ2i=2 and hϵϕi is the mean scalar dis-
sipation; C0 is the Obukhov-Corrsin constant. In Fig. 3, we
plot the Obukhov-Corrsin compensated scalar spectra for
all cases. There is no collapse of the data, and so
compressibility appears to have a first order effect on
the scalar spectra.
As a third instance, consider the alignment of the scalar

gradient with the directions of the eigenvectors of the strain
field. In incompressible turbulence, the turbulent velocity
field plays an important role in the stirring action of passive
scalars where the different isosurfaces of the scalars are
brought together [1,24,25]. This stirring action results in
high scalar gradients across the flow field, ultimately
enabling molecular diffusion to act. Batchelor’s theory
[19], initially proposed for large Schmidt numbers, shows
that the scalar gradient aligns itself with the most com-
pressive eigenvalue. DNS studies [26] have shown that this
aspect of the theory is valid, perhaps surprisingly, even for
Schmidt numbers of order unity; see also Vedula et al. [27].
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FIG. 1. Parameter space of simulations for the scalar field.
(a) Mt − Rλ plane: red, δ < 10−3; blue, 10−3 < δ < 10−2; green,
10−2 < δ < 10−1; orange, 10−1 < δ < 1; brown, 1 < δ < 10.
(b) δ − Rλ plane: blue, Mt < 0.2; green, 0.2 < Mt < 0.4; brown,
0.4 < δ < 0.7. Symbols in both figures correspond to different
percentages of dilatational forcing, σ: diamonds, incompressible
simulations; circles, σ ¼ 0; triangles, σ ¼ 10–30; squares,
σ ¼ 30–65; stars, σ ¼ 65–100.
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FIG. 2. (a) Kolmogorov-compensated total energy spectra
using total energy dissipation and Kolmogorov length scale
[η ¼ ðμ3=hρi2hϵiÞ1=4] [5]. (b) Kolmogorov-compensated solenoi-
dal energy spectra using total dissipation and the Kolmogorov
length scale based on it. Here and in all figures to follow except
Fig. 7, different colors correspond to different Reynolds numbers.
Red, Rλ < 40; blue, 40 < Rλ < 75; green, 75 < Rλ < 115; and
orange, 115 < Rλ < 170. The velocity data of this figure and in
Fig. 5(a) include a larger set of conditions than shown for the
scalar field in Fig. 1.
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Danish et al. [28] studied this alignment for decaying
compressible turbulence and found that the topology and
alignment were universal for a range of Reynolds andMach
numbers, but their studies were confined to a narrow range
of initial Mt (0.50–0.70) and Rλð18 − 24Þ. For the wider
range of compressible turbulent states considered here, in
terms of Rλ,Mt, and δ, Fig. 4 shows that the scalar gradient,∇ϕ ¼ ∂ϕ=∂xi, does not align uniquely with the symmetric
part of the velocity gradient tensor, Sij, where

Sij ¼
1

2

�∂ui
∂xj þ

∂uj
∂xi

�
:

The eigenvectors of this tensor, called here eα, eβ, and eγ ,
correspond, respectively, to the maximum, intermediate,
and minimum eigenvalues with α > β > γ; incompressible
turbulence is constrained by αþ β þ γ ¼ 0. The previous
observations by Blaisdell et al. [29], and more recently by
Ni [4], that contributions from the dilatational field to the
scalar flux are negligible compared to the solenoidal part
alone, also correspond to a narrow range of conditions.

The discussion so far makes it clear that even the
spectrum for just the solenoidal part of the velocity field
does not satisfy the incompressible scaling laws if we
consider forcing that includes a dilatational component (see
Fig. 1). Existing work [5,7,30,31] that makes this claim
concerns the velocity field under pure solenoidal forcing
and decaying turbulence.
We now propose the following paradigm. Similar to the

velocity field one can decompose the dissipation into
solenoidal and dilatational contributions as hϵi ¼ hϵsiþ
hϵdi, where hϵsi ¼ hμωiωii, ω being the vorticity of the
fluid motion, and hϵdi ¼ ð4=3Þhμð∂ui=∂xiÞ2i are the
solenoidal and dilatational parts, respectively. Indeed,
under solenoidal forcing conditions when δ ≪ 1 and
hϵsi ≈ hϵi, we do not expect significant departures in the
scaling of the solenoidal energy spectra. However, under
general conditions of mixed solenoidal-dilatational forcing
where δ can vary by orders of magnitude, one may expect
that the use of solenoidal variables in the compensation of
the solenoidal spectra would yield better collapse. Indeed,
Fig. 5(a) shows the excellent collapse of the Kolmogorov-
compensated solenoidal energy spectra when both velocity
and the dissipation pertain solely to the solenoidal varia-
bles. The solenoidal Kolmogorov length scale is defined [5]
as ηs ¼ ðhμi3=hρi2hϵsiÞ1=4, which is larger than the total
Kolmogorov scale since hϵi > hϵsi.
In Fig. 5(b), we plot the Obukhov-Corrsin compensated

scalar spectrum using just the solenoidal part of the velocity
field. A robust collapse occurs for scalar spectra under a
wide range of conditions and the spectra look similar to the
incompressible case. This suggests that even at really high
levels of dilatational content in the flow field, the inter-
action between the passive scalars and solenoidal velocity
field is universal. A plausible reason is that the large scales
of the passive scalar and the cascade process by which they
are broken down to smaller scales is due mainly to the
vortical (solenoidal) motions that are essentially indepen-
dent of compressibility. Thus, when the classical scaling
laws are applied to the solenoidal part, they obey the same
incompressible turbulence models in highly compressible
flows, even when the dilatational part is quite strong.
We now come to the orientation of the scalar gradient

with respect to the velocity strain field. Following the
observations above, we assess the effect of the solenoidal
component of the tensor, Ssij. In particular, we examine the
statistics of the normalized eigenvalues (βs) [27] given by
β̂s ¼

ffiffiffi
6

p
βs=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2s þ β2s þ γ2s

p
, such that −1 ≤ β̂s ≤ 1.

In Fig. 6(a) is plotted the probability density function
(PDF) of β̂s for a wide range of compressibility conditions.
Excellent collapse is observed [curve (i)], indicating that
the ratio of the PDF of the solenoidal part of the eigenvalues
is unaffected by compressibility. Similar universal behavior
is observed for the ratio of βs=γs shown as curve (ii) in the
same figure. We also note that the maximum probable value
of βs=γs is approximately 0.28 which corresponds to the
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FIG. 3. The Obukhov-Corrsin compensated scalar spectra using
total dissipation and Kolmogorov length scale based on the total
energy dissipation. No scaling is observed. The dashed line is for
the incompressible case.
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FIG. 4. Alignment of scalar gradient (∇ϕ) with the eigendir-
ections of the Sij, i.e., eγ , eβ, eα, which correspond to the
eigenvalues ðγ; β; αÞ with γ < β < α.
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ratio of γs=βs ¼ 3.7, close to the finding for incompressible
turbulence [32], and consistent with results for solenoidal
forcing [33]. This feature suggests that, while compress-
ibility may change the solenoidal field itself, it does not
alter its mixing capability and would remain as efficient as
incompressible turbulence.
Figure 6(b) plots the alignment of the scalar gradient with

the solenoidal frame of reference. Its behavior is very similar
to that of incompressible turbulence [27], with a high
probability for the scalar gradient to align with the most
compressive direction. Similar observations were made by
Foysi et al. [34] at Reλ ≈ 50 andMt between 0.05–0.63 for
solenoidally forced simulations (compared to the larger
DNS database and more general conditions of forcing
discussed in the current work.) There are, however, some
weak compressibility effects at the small scale. To under-
stand them qualitatively, we show in Fig. 7 the PDF values
for cos ð∇ϕ; eγÞ ∈ ½0.995; 1�—that is, when the two vectors
are almost perfectly aligned—as a function of turbulent
Mach number, Mt. The figure shows that Rλ is the major
effect, though a weaker decreasing trend with Mt is also
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FIG. 6. (a) Normalized eigenvalues of the solenoidal symmetric
velocity gradient tensor Ssij: (i) β̂s ¼

ffiffiffi
6

p
βs=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2s þ β2s þ γ2s

p
;

(ii) βs=γs. (b) Alignment of scalar gradient (∇ϕ) with eγ , eβ,
eα, the eigenvectors of Ssij.
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FIG. 5. Kolmogorov-compensated solenoidal energy spectra
(a) and Obukhov-Corrsin compensated scalar spectra (b) using
solenoidal dissipation hϵsi and solenoidal Kolmogorov length
scale ηs. The dashed line in the bottom figure is for the
incompressible case.
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FIG. 7. (a) Probability that the scalar gradient (∇ϕ) aligns
perfectly with the eigendirection eγ corresponding to the most
compressive eigenvalue. Symbols in the figure correspond to
different percentages of dilatational forcing. σ: incompressible
simulations (diamonds), σ ¼ 0 (circles), 10–30 (triangles), 30–65
(squares), and 65–100 (stars).
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seen. This suggests that the shocklets formed in compress-
ible turbulence influence the dissipative motions modestly
but not the inertial-like scales considered in the figures. The
modest magnitude of the effect is in part due to the small
volume occupied by shocklets (less than 3%, [5]) even
at the most extreme dilatational conditions studied here.
Furthermore, under this condition, ηs becomes larger than
that for purely solenoidal forcing [seen as a shift to the left of
the spectrum in Fig. 2(b) as δ increases], which results in a
wider difference between the smallest scalar scales and the
shocklets. This scale separation would also contribute to the
weak interaction between the scalar and the dilatational
velocity field at small scales.
In summary, using high fidelity DNS data, we have

shown that the interaction between the passive scalar and
solenoidal velocity field is universal under a wide range of
compressibility conditions, if both the velocity field and the
energy dissipation are taken from the solenoidal part of the
velocity.
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