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The underlying structure of low-lying collective bands of atomic nuclei is discussed from a novel
perspective on the interplay between single-particle and collective degrees of freedom, by utilizing state-of-
the-art configuration interaction calculations on heavy nuclei. Besides the multipole components of the
nucleon-nucleon interaction that drive collective modes forming those bands, the monopole component is
shown to control the resistance against such modes. The calculated structure of 154Sm corresponds to the
coexistence between prolate and triaxial shapes, while that of 166Er exhibits a deformed shape with a strong
triaxial instability. Both findings differ from traditional views based on β=γ vibrations. The formation of
collective bands is shown to be facilitated from a self-organization mechanism.
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The structure of atomic nuclei exhibits single-particle as
well as collective-mode aspects created by the protons and
neutrons (nucleons). The former has been characterized
by the shell structure shown initially byMayer [1] and Jensen
[2], while the latter has presented a variety of nuclear shapes
following Rainwater [3], and Bohr andMottelson [4–6]. The
two aspects lead to “the problem of reconciling the simulta-
neous occurrence of single-particle and collective degrees of
freedom …” [7]. This is one of the most important basic
questions in nuclear structure research, and it remains open.
For instance, G. E. Brown has addressed the question of
“how single particle states can coexistwith collectivemodes”
throughout his life [8]. We discuss in this Letter this problem
from a novel perspective.
Nucleons in an atomic nucleus occupy single-particle

orbits in various configurations. The effective nucleon-
nucleon (NN) interaction in nuclei induces multinucleon
correlations by mixing such configurations. This mixing
occurs, in many cases, basically for “valence” nucleons in
single-particle orbits on top of the appropriate closed proton
and neutron shell (inert core). The ellipsoidal shapes
correspond to such correlations having the nature of quadru-
pole surface deformation from a sphere, driven by the
quadrupole component of the NN interaction [9–14].
This gives rise to an interplay between collective mode
and single-particle states (SPSs). If SPSs relevant to these
correlations are separated by large gaps, the mixing between
them and the resulting correlations are reduced. Thus, the
SPSs can act as a “resistance” to (the formation of) collective
modes. In this Letter, we first present how ellipsoidal shapes
emerge from multinucleon systems by using the state-of-
the-art configuration interaction (CI) simulations, called the

Monte Carlo shell model (MCSM) [15,16]. This allowed us
to uncover a novel mechanism: the monopole component of
theNN interaction shifts the single-particle energies (SPEs)
effectively, weakening the resistance against deformation,
and thus enlarging effects of the quadrupole interaction. For
textbook examples of strongly deformed nuclei, such as
154Sm and 166Er, the obtained properties agree with experi-
ments, but the underlying structures are shown to differ from
the traditional interpretation [4]. This mechanism can be
interpreted as quantum-mechanical self-organization [17].
We performed CI calculations on the samarium isotopes

(proton number, Z ¼ 62) with even numbers of neutrons,
N ¼ 82–92, and the 166Er (Z ¼ 68, N ¼ 98) nucleus,
without any assumptions of collective modes or shapes.
A many-body Schrödinger equation is solved for the input
NN interaction, which remains the same for all calcula-
tions. The valence proton (neutron) orbits are all orbits in
the sdgðpfhÞ shell and the lower half of the next shell,
implying the one-and-a-half harmonic oscillator shell on
top of a 110Zr inert core. This large model space is essential
for the present study. The CI calculations need the SPEs
with respect to the inert core, the appropriate values of
which are taken and kept, if available, based on known ones
at 132Sn. The effective NN interaction is taken from the
VMU interaction for the proton-neutron channel [18] with a
factor of 0.94 to its T ¼ 0 (T:isospin) central part. The
proton-proton and neutron-neutron channels are taken from
[19]. For the cases where this recipe is not possible, the
VMU interaction is used. Note that the VMU interaction was
determined as a simple modeling to the microscopic shell-
model interactions [18], and that it was used in earlier
studies on Zr, Sn, and Hg isotopes [20–24]. The dimension
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of the many-body Hilbert space reaches beyond 1031,
which is formidably larger than the current limit (∼1011)
of the conventional CI method.
Figure 1(a) exhibits the experimental levels for Sm

isotopes [25] as a function of N in comparison to the
presently calculated ones. The Exð2þ1 Þ is high forN ¼ 82, a
magic number, but becomes lower steadily as N increases.
The 2þ1 states around N ¼ 86 imply a quadrupole surface
oscillation on top of a spherical ground state. With largerN,
the deformation becomes static out to an ellipsoid, which
generates a rotational band, a Nambu-Goldstone effect
[27–29]. The Jπ ¼ 4þ1 levels exhibit a vibrational two-
phonon pattern with Exð4þ1 Þ=Exð2þ1 Þ ∼ 2 at N ¼ 86, while
it evolves to the rotational value (10=3) for N ¼ 92, both in
experiment and calculation [30].
Figures 1(b) and 1(c) display the BðE2; 2þ1 → 0þ1 Þ and

BðE2; 4þ1 → 2þ1 Þ values and the spectroscopic electric
quadrupole moment of the 2þ1 state. The standard effective
charges 1.5e (0.5e) for protons (neutrons) are taken [4]. An
overall agreement between calculation and experiment
suggests the validity of the present work, which is actually
the first CI calculation for the shape evolution of samarium
isotopes. Previously, this topic was studied in different
frameworks (see, e.g., [31–35]).
We now focus on 154Sm (N ¼ 92). Figures 2(a) and 2(b)

show its observed and calculated energy levels classified
in four rotational bands [25]. A good agreement between

experiment and calculation is observed. The band built on
the ground state is prolate deformed, as confirmed by
the large quadrupole moment and BðE2Þ values shown
in Fig. 1.
Figure 3 shows a deeper insight in the calculation

performed for 154Sm. It includes potential energy surface
(PES) obtained by Hartree-Fock calculation using the same
Hamiltonian with, as constraints, the quadrupole moments
corresponding to specific values of β2 and γ (their relations
are explained in [23,24,36]). The latter are shape variables of
the ellipsoidal shape being themagnitude and the proportion
of the ellipsoid axes, respectively [see Fig. 3(a)] [4]. Figure 3
includes panels of three-dimensional PES, relative to the
lowest energy. Figure 3(b) exhibits the lowest values of such
PES values for a given value of γ.
We can now “visualize” the eigenstates obtained for

154Sm by using the so-called T-plot [37,38]. An eigenstate
is expanded by MCSM basis vectors. One can assign
partial coordinates to eachMCSM basis vector by its β2 and
γ values, and can plot it on the PES. In this plot, the
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importance of each basis vector for this particular
eigenstate is expressed by the size of the plotted circle.
Figure 3(c) indicates that the T-plot circles for the ground
state are concentrated around β2 ¼ 0.28 and γ ¼ 0°, a
prolate shape. The T-plots of 2þ–8þ members of the band,
independently obtained, exhibit very similar patterns. This
is interpreted as a strong signature of belonging to the same
band. Figure 3(d) shows T-plot circles belonging to the 0þ2
state at 1.1 MeV. The circles are concentrated in a local
minimum at γ ∼ 20°, a triaxial shape [39,40]. The 0þ2 , 2

þ
2;3,

3þ1 , and 4þ2;3 states show almost identical T-plots. Thus the
present calculation indicates a coexistence between prolate
and triaxial shapes, in a stark contrast to the conventional
picture of the β=γ vibrations (see, e.g., [30,41,42]).
In order to clarify the underlying mechanisms giving rise

to this picture, we decompose NN interaction into two
components: monopole and multipole interactions (see
reviews, e.g., [38,43–45]). The effect of the monopole
interaction between protons in the orbit jp and neutrons in
the orbit jn is expressed as

vmpnðjp; jnÞnpðjpÞnnðjnÞ; ð1Þ

where vmpn is a coefficient called monopole matrix element,
npðjpÞ denotes the number of protons in the orbit jp, and
nnðjnÞ means likewise for neutrons. We first discuss how
this interaction works. For the state being considered (e.g.,
the 0þ1 state), nnðjnÞ takes integers, 0; 1; 2;…, with the
corresponding probabilities. Once one of these integers, k,
substitutes nnðjnÞ, this interaction energy becomes
kvmpnðjp; jnÞnpðjpÞ, which represents a shift of the SPE
of the orbit jp by kvmpnðjp; jnÞ. This has two important
aspects: (i) the SPE is modified; (ii) the effect is propor-
tional to the number of neutrons in jn. So, this varies
effectively the SPE of the proton jp orbit depending on
which neutron orbits are occupied. By including contribu-
tions from all neutron orbits and also those due to the
proton-proton interaction, we define the effective SPE
(ESPE) of the proton orbit jp. Its expectation value is
depicted in Fig. 3(g) for the 0þ1;2 states. The expectation
value of npðjpÞ is shown also. The same quantities for
neutrons are displayed in panel (h).
If the monopole matrix elements were identical with

respect to jp and jn in Eq. (1), the energy would be moved
by the same amount for all states of a given nucleus. This is,
however, not the case with the realistic NN interaction: the
finite range property of the central force and the spin-
isospin dependence of the tensor force produce significant
variations with respect to jp and jn in Eq. (1) [18,45,46].
The multipole interaction contains various pieces, but the

part most relevant to this work can be modeled by the
coupling between the proton and neutron quadrupole
moments (operators) as vqpnQp ·Qn, where vqpn is the
interaction strength, and Qp and Qn denote, respectively,

proton and neutron quadrupole moments coupled by a
scalar product. With negative vqpn, quadrupole moments
produce binding energy through this interaction, which can
result in strongly deformed states. Namely, the quadrupole
interaction thus defined is the driving force of the collective
mode of quadrupole deformation.
The quadrupole moment can become quite large, if

several relevant single-particle orbits mix coherently, as a
realization of the Jahn-Teller effect [47]. If those orbits are
far away from each other in energy, they mix only little.
However, thanks to the monopole interaction and possible
variations of the occupation pattern, the ESPEs can be
shifted so that a more coherent mixing occurs giving more
binding energy to the nucleus. This ESPE optimization does
occur, and arises differently for each collective mode or
shape, as visualized by the average ESPEs. Figures 3(g) and
3(h) exhibit them for the0þ1 and 0þ2 states of 154Sm,which are
of prolate and triaxial shapes, respectively. Such differences
are due to different occupation patterns [see horizontal levels
in Figs. 3(g) and 3(h)] and the aforementioned orbital
dependences of the monopole interaction.
In order to shed further light on this effect, we performed

CI calculations without the monopole interaction and
instead the average ESPEs are adopted as input SPEs
(i.e., constants), as denoted “monopole-frozen” analysis.
Figure 2(c) depicts levels by adopting the average ESPEs of
the 0þ1 state. The properties of ground-band members are
rather unchanged from the original calculation naturally.
However, because the ESPE optimization for the 0þ2 state is
completely ignored, the 0þ2 energy is raised by 50%, as well
as the 2þ2 and 4þ2 levels, as shown in Fig. 2(c). This is
consistent with the PES: Figure 3(b) indicates that the local
minimum around γ ¼ 15° on the prolate line is higher by
about 500 keV than the corresponding one of the original
line. Anothermonopole-frozen analysis wasmade by taking
average ESPEs calculated at the spherical limit of the PES.
Figures 3(e) and 3(f) display the PES and T-plot, indicating
that the 0þ1 state is no longer prolate but triaxial, whereas the
0þ2 state becomes prolate. Figure 2(d) verifies this in terms of
energy levels with the 0þ1 state being triaxial (green level)
and the 0þ2 state being prolate (red level). These two
examples of the monopole-frozen analysis demonstrate
the crucial roles of the monopole interaction.
The energy gain of the prolate minimum measured from

the spherical limit is ∼8 MeV in the original calculation
[see Fig. 3(c)]. Yet, it is only ∼5 MeV in the monopole-
frozen analysis with the spherical limit [see Fig. 3(e)].
Thus, the ESPE optimization is shown to lower the energy
of the prolate state by ∼3 MeV. The same analysis for the
triaxial states indicates a gain of about 1 MeV. The ESPE
optimization thus yields varying energy gains for the
different shapes, lowering the prolate bands more.
Finally, we note that also the presence of the negative-

parity band built on the 1−1 level has been reproduced
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[see Fig. 2(a)], reinforcing the validity of the present
calculation, particularly the shell gaps.
The second example is 166Er, which has shape character-

istics different from those of 154Sm. The Hamiltonian is the
same as that for the Sm isotopes except for a minor change
for a better description: proton 1d3=2 (0g7=2) SPE shifted by
0.5 ð−0.5Þ MeV. Figure 4(a) displays the lowest energy
levels, calculated and measured [25]. The lowest side band
starts from the Jπ ¼ 2þ2 level, called the Kπ ¼ 2þ band,
which has been considered to be a γ vibration, where two
short axes of the elongated ellipsoid oscillate, keeping
the volume constant [4,25,48]. One of the crucial quantities
for this picture has been a relatively large value of
BðE2; 2þ2 → 0þ1 Þ, which is 5.17 (21) W.u. experimentally
[25]. This value is reproduced by the MCSM calculation to
be 5.3W.u. The electric spectroscopic quadrupole moments
of the 2þ1;2 states are reproduced well [26]. Thus, we have a
salient description of the 0þ1 and 2þ1;2 states of

166Er as well
as the other states [see Fig. 4(a)].
Figure 4(b) displays the PES for 166Er, where the energy

minimum is stretched in the γ direction. Figures 4(c)
and 4(d) display the T-plot for the 0þ1 and 2þ2 state, which
appear to be almost identical. We thus see γ softness with γ
between 5° and 15°. This does not seem to be compatible
with the traditional picture of the prolate shape for the 0þ1

state and the γ-vibrational excitation for the 2þ2 state [4].
Rather, the T-plots indicate that these states stem from the
same minimum in the triaxial plane. The quadrupole
invariant analysis [49] made with the calculated quadrupole
matrix elements of the states shown in Fig. 4(a) results in
γ ¼ 9° for the electric matrix elements and γ ¼ 10° for the
mass ones, respectively, consistently with the above range
of γ. In case of rigid triaxial deformation with γ ¼ 9°, the
2þ2 level is expected to be much higher in energy [40],
indicating that the present γ softness lowers the band built
on this state. The monopole-frozen analysis using the
spherical ESPE produces a completely different T-plot
for the ground state with a concentration into the region of
γ < 4° [see Fig. 4(e)], being consistent with a prolate shape.
Thus, the present ESPE optimization is crucial also for the γ
softness being discussed.
The traditional interpretation of the band structures in

154Sm and 166Er is not supported by the MCSM calculations
presented here. The underlying structure of 154Sm appears
much more like a shape coexistence [50–53] between a
prolate minimum and a triaxial minimum. While the pos-
sibility of another equilibrium was already mentioned by
Bohr and Mottelson [4], it was not further investigated in
detail (see also a recent review paper on the experimental
findings[54]). The present calculation indicated that by add-
ing six protons and six neutrons, the twominima of 154Sm are
moved closer and merged by reaching 166Er, suggesting that
nuclear forces can produce a wide diversity of structures.
Finally, we put the quadrupole-monopole interplay in the

context of self-organization in atomic nuclei [17]. In self-
organization, a system is initially disordered, which cor-
responds to the SPEs without the optimization of the ESPE.
In the present work, order implies that the ESPEs are
tailored to a specific shape. Generally, some order may
arise due to the self-organization in response to a change in
external conditions. Atomic nuclei are, to a large extent,
isolated quantum systems. However, if there are two kinds
of ingredients, like protons and neutrons, one can behave
like the source of an external force on the other. By
activating the present monopole mechanism, the ESPEs
are organized so that more binding energies are gained, as
compared to the SPEs without the optimization (“disor-
dered” system). While these SPEs can be a resistance to the
collective mode (as stated earlier), the monopole interaction
can act as a resistance-control force; in the present context,
it can bring a certain order to the system. While the final
solution is determined self-consistently by including all
components of the NN interaction, a “positive feedback”
can occur in this process especially between the quadrupole
and monopole effects. As the present optimization effect
varies for different shapes, it may appear to act purposely
for a particular shape, for instance, a prolate one, although
the monopole interaction as such has no connection to the
deformation. This “to act purposely” is one of the features
of self-organization.
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In summary, CI calculations with the largest scale have
clarified the structure of various bands in heavy nuclei. The
interplay between the quadrupole and monopole interaction
produces significant effects, as a quantum version of the
self-organization. Namely, in a simplified view based on
Landau’s Fermi liquid theory [55], nucleons are like free
particles (quasiparticles) in the mean potential with fixed
SPEs, and interact only weakly through a (residual) NN
interaction. However, the actual structure seems to lie
beyond this scope, because of the richness of the nuclear
forces. The resistance-control force, i.e., the monopole
interaction, does not promote the collective mode by itself,
but can change the “environment”: the ESPEs are opti-
mized to different collective modes giving rise to a
large diversity of phenomena [20,21,23,24,37,38,56,57].
Although the CI calculations can be refined, the overall
agreement to experiments suggests the validity of the
underlying picture, shifting our basic understanding from
the liquid drop model including its quantized forms to a
more explicit multinucleon description with aspects such as
shape coexistence, triaxial instability, and shell evolution.
This mechanism is expected to be more important in
heavier nuclei including the superheavy ones, because
more valence orbits and more nucleons imply more degrees
of freedom for optimizing the SPEs. The relevance to
superdeformation and clustering is of interest also, as
particular configurations can be important. In heavy nuclei
like uranium, new local minima or widening of minima in
the γ direction may appear at larger deformations on the
PES, providing a new scope for the fission process, where
the time evolution proceeds through possible tunneling
paths linking those minima. It will be interesting also to
explore similar self-organization mechanisms in other
quantum systems as they can give rise to unexpected
features.
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