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We propose a new way of breaking the Goldstone symmetry in composite Higgs models, restoring the
global symmetry in the mixings between the elementary and composite fermions by completing the former
to full representations of this symmetry. The Goldstone symmetry is in turn broken softly by vectorlike
mass terms in the elementary sector only. The resulting softened explicit breaking allows for a light Higgs
boson, as found at the LHC, and a heavy top quark, without the need of light top partners around the
Goldstone scale f ∼ TeV ≪ mcomp., which remain elusive at the LHC, while we recover the standard
scenario in the limit of infinite vectorlike masses.
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Introduction.—Composite Higgs (CH) models offer a
promising means to solve the hierarchy problem—one of
the biggest puzzles in fundamental physics—since the
Higgs boson is no longer a fundamental scalar but rather
a bound state of a new strong interaction, which can be
resolved above the TeV scale, and its mass is thus
saturated in the IR [1–3]. Moreover, the conventional
assumption of the Higgs boson being a (pseudo-)
Goldstone boson of a spontaneously broken global
symmetry [SOð5Þ → SOð4Þ in minimal models] provides
an intriguing reasoning for its lightness compared to
other new states that have not been discovered so far. In
the same framework, partially composite fermions
(elementary fields mixing linearly with the composite
sector of bound states) can also explain the hierarchical
structure of fermion masses and mixings [4–7] and
provide a dynamical origin for electroweak symmetry
breaking (EWSB), mostly triggered by the large top-
quark compositeness. The latter explicitly breaks the
global symmetry, since the standard model (SM) fer-
mions do not fill complete representations of the global
symmetry that could couple to the composite sector in an
invariant way, and thereby induces a potential for the
Goldstone Higgs boson, intertwining flavor and EWSB.
Minimal models are, however, in increasing tension with

the absence of light top partners at the LHC, which are
required to keep the Higgs boson light by reducing the
Goldstone-symmetry breaking [7–11], threatening the
viability of explicit CH incarnations (see, e.g.,
Ref. [12]). While one possibility to avoid this is the

inclusion of a realistic lepton sector [13], which can have
a non-negligible impact with interesting consequences for
flavor physics [12–16] (see also Ref. [17] for a solution via
an enlarged quark sector), here we want to explore an
orthogonal solution, changing in fact the nature of the
explicit Goldstone symmetry breaking.
Indeed, the latter could be significantly reduced if

the SM fermions would be uplifted to complete repre-
sentations of the global symmetry. In that case, their
mixing with the composite sector, determining their
degree of “compositeness,” would no longer violate the
global symmetry. However, the symmetry still needs to be
broken, but this is now done by introducing vectorlike
mass terms for the new elementary fermions, at the same
time accounting for the nonobservation of light states
other than the SM ones. This will shift the source of
explicit breaking to a different sector and thereby corre-
sponds to a fundamentally different approach of breaking
the Goldstone symmetry.
The breaking is now “soft,” since induced by mass

terms in the elementary sector. Contrary to the conven-
tional case, the underlying interactions between the SM
fermions and the constituents of the composite states now
preserve the global symmetry. In particular, the setup
leads to a different parametric structure of the mass of the
composite Higgs boson, allowing us to lift the light top
partners. The purpose of this Letter is to work out the
phenomenological and conceptual consequences of this
approach. Here, we focus on the minimal SOð5Þ=SOð4Þ
composite Higgs scenario [5], but the considerations can
easily be extended to different cosets.
Setup.—We start by recalling that in the MCHM5 [7], the

left-handed doublet qL and the singlet tR are embedded as

ψ t
L ¼ Δt

L
†qL ∼ 52=3; ψ t

R ¼ Δt
R
†tR ∼ 52=3; ð1Þ

where the spurions
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Δt
L ¼ 1ffiffiffi

2
p

�
0 0 1 −i 0

1 i 0 0 0

�
;

Δt
R ¼ −i

�
0 0 0 0 1

�
ð2Þ

parametrize the SOð5Þ breaking due to the fact that qL and
tR do not fill complete SOð5Þ multiplets.
In the proposed vectorlike extension with soft Goldstone

breaking, the sMCHM5, we uplift ψ t
L and ψ t

R to full SOð5Þ
representations by introducing two vectorlike elementary
SUð2ÞL doublets, w and v, and a singlet s,

ψ t
L ¼ Δt

L
†qL þ Δ†

wwL þ Δ†
ssL;

ψ t
R ¼ Δt

R
†tR þ Δ†

wwR þ Δ†
vvR; ð3Þ

where Δs ¼ Δt
R, Δv ¼ Δt

L, and

Δw ¼ 1ffiffiffi
2

p
�
1 −i 0 0 0

0 0 1 i 0

�
: ð4Þ

The new fermions v and s have the same quantum numbers
as qL and tR, respectively, whereas w is an exotic doublet.
Since v, s, and w are vectorlike, we can write down the
mass terms

−Lel ¼ mss̄LsR þmvv̄LvR þmww̄LwR þ H:c:

¼ msψ̄
t
LΔ

†
ssR þmvv̄LΔvψ

t
R

þmwψ̄
t
LΔ

†
wΔwψ

t
R þ H:c:; ð5Þ

where the rewriting in the last two lines makes the SO(5)
breaking by the vectorlike masses apparent due to the
presence of the Δ spurions. Two more mixing terms,
namely, δ1q̄LvR and δ2 t̄RsL, are allowed by gauge sym-
metry. However, their impact is small and we shall include
them for completeness only when performing numerical
scans, and set δ1 ¼ δ2 ¼ 0 for analytical estimates.
The elementary fields ψ t

L and ψ
t
R mix with the composite

resonances as in the MCHM5, i.e., (see, e.g., Refs. [7,18]),

Lmixing ¼ −mQQ̄LQR − m̃T
¯̃TLT̃R

− yLfπψ̄ t
LIðaLUIiQi

R þ bLUI5T̃RÞ
− yRfπψ̄ t

RIðaRUIiQi
L þ bRUI5T̃LÞ þ H:c:; ð6Þ

where only the lightest top partners are kept and fπ is the
Goldstone-Higgs decay constant. The composite resonan-
ces Ψ̃T ¼ UðQ; T̃ÞT have been decomposed into fourplets
and singlets under the unbroken SOð4Þ subgroup via the
CCWZ prescription, with U the Goldstone matrix. As
mentioned, this mixing provides no source of explicit
SOð5Þ breaking, which is sequestered to the elementary
sector, coming only from Lel in Eq. (5). This will in
particular lead to a different structure of the Higgs potential.

In contrast to the MCHM5, the SOð5Þ breaking spurions are
now separated from the Goldstone-Higgs matrix U, which
requires a larger number of mass-mixing insertions in order
to generate a potential, as we also explicitly find in the
calculation of the Higgs potential below.
In the 5D holographic dual (see Refs. [5–7]), our setup

would correspond to choosing the same boundary con-
ditions for all components of the fermionic bulk fiveplets of
SOð5Þ—whose zero modes contain the SM fermions—
thereby respecting SOð5Þ at the first place. The additional
zero modes that emerge due to these universal boundary
conditions are then lifted via finite SOð5Þ-breaking vec-
torlike boundary mass terms on the UV brane. The limit
of infinite vectorlike masses reproduces the dedicated
boundary conditions that remove those zero modes in
the conventional approach. This is similar to realizing
EWSB via coupling to an IR-localized Higgs sector with a
finite vacuum expectation value (VEV), instead of employ-
ing Dirichlet boundary conditions to remove the massless
modes of the weak gauge fields.
After all, the soft-breaking setup interpolates between a

model with no electroweak symmetry breaking (all vector-
like masses set to zero) and the conventional setup where
the explicit breaking comes from fermion partial compos-
iteness (all vectorlike masses set to infinity), the inter-
mediate region being the target of our analysis.
Analysis and numerical results.—We perform our quan-

titative analysis in a two-site implementation of the
sMCHM5, where only the first layer of resonances is kept
in the spirit of discrete models, see Refs. [11,18]. The
two-site model is given explicitly by the Lagrangian (6),
with aL ¼ aR ¼ bL ¼ bR ¼ 1, together with the elemen-
tary fields, whose dynamics is specified by Eq. (5).
The Higgs potential, induced by explicit SOð5Þ break-

ing, is computed via the Coleman-Weinberg procedure and
can be parametrized as

VðhÞ ¼ αsin2ðh=fπÞ þ βsin4ðh=fπÞ: ð7Þ
Within the two-site model, α is logarithmically divergent as
in the MCHM5. In our construction, this turns out to be a
consequence of the minimal embedding (3) rather than a
generic prediction and α can actually be finite in other
realizations of soft breaking. We leave this for further
investigation.
The divergence in α can be cured by means of standard

renormalization, where the renormalization scale is fixed
to reproduce the Higgs VEV [8]. The model is, however,
still predictive in terms of β, which is calculable and
connects the fermionic spectrum (entering the latter) to the
Higgs mass:

m2
h ¼ 2β=f2π sin2ð2h=fπÞ; ð8Þ

where here, and in the following, h denotes the background
value of the Higgs field.
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In practice, when scanning the parameter space, we use a
renormalized Higgs potential for our two-site model in the
spirit of Ref. [8],

VðhÞ ¼ −
Nc

16π2
X

i

miðhÞ4½lnmiðhÞ2=μ2 − 3=2�; ð9Þ

where miðhÞ denote for the field-dependent fermion
masses, and determine μ once all the other parameters
are fixed in order to reproduce the correct Higgs VEV. We
also require μ to be below the cutoff of the effective
theory Λ ≈ 4πfπ.
In the MCHM5, the top quark mixes with the doublet

within Q sharing the quantum numbers of qL, denoted by
T, and with T̃, the singlet with tR quantum numbers. In the
sMCHM5, there are two corresponding doublets, identified
with the two superpositions of Q and the elementary
doublet v, which we denote by Tþ and T−. Similarly, T̃
splits into two states, made out of T̃ and s and referred to as
T̃þ and T̃−. As a consequence, the expression for the top
mass is modified in the sMCHM5, reading

m2
t ¼ y2Ly

2
Rf

4
π
m2

sm2
vðmQ − m̃TÞ2

8m2
Tþm

2
T−
m2

T̃þ
m2

T̃−

sin2ð2h=fπÞ: ð10Þ

When the s, v, and w fields are decoupled taking
ms;v;w → ∞, Eq. (10) approaches the result of the
MCHM5 [8] (notice that mT�;T̃� also depend on ms;v).
We regard the vectorlike masses of the different fermion

species, s, v, and w, as independent quantities. To inves-
tigate the relation between the Higgs mass and the top
partners, we thus first consider the case in which only the
singlet s is active below the condensation scale Λ ∼ 4πfπ ,
which is computationally transparent, and finally the case
in which all the fermion species contribute.
Singlet case.—Wework in the limit in which the singlet s

is heavier than yL;Rfπ but still active below the condensa-
tion scale, whereas v and w are decoupled. This allows for
analytical approximations that can be compared with the
full numerical result. For notational convenience we intro-
duce the fourplet-to-singlet mass ratio q≡mQ=m̃T and the
composite-to-elementary ratio r≡ m̃T=ms. The MCHM5 is
then recovered for r ¼ 0. In terms of these ratios, the top
mass and the coefficient β read

m2
t ≃

y2Ly
2
Rf

4
π

8m2
Q

ðq−1Þ2sin2ð2h=fπÞ;

βðr2Þ≃3y2Ly
2
Rf

4
πð1−qÞ2

16π2ð1−q2r2Þ ½ðr2þ1=q2ÞFðq2Þ−2Fðr2Þ�; ð11Þ

where Fðx2Þ ¼ ðx2=1 − x2Þ lnð1=x2Þ. As we can see, the
top mass is independent of r to first approximation.
Conversely, the Higgs potential depends on r, and, in
particular,

βðr2Þ − βð0Þ ≤ 0; ð12Þ

meaning that the singlet s always reduces the amount of
explicit breaking, thus leading to a lighter Higgs boson.
Combining Eqs. (8) and (11), we can relate the Higgs mass
to the spectrum of resonances as

m2
Q ¼ 1

16
y2Ly

2
Rf

6
π
ð1 − qÞ2
βðr2Þ

�
mh

mt

�
2

: ð13Þ

In turn, we estimate the mass of the lightest eigenstate of
the system, ml, via

m2
l ≃minfm2

Q; m̃
2
T;m

2
sg

¼ m2
Q × min f1; 1=q2g; ð14Þ

where m2
Q is given in Eq. (13) and we have used the fact

that the configurations with the singlet s as the lightest state
are excluded because of a negative quartic, see below.
The value of ml predicted by Eq. (14) is shown in the

upper panel of Fig. 1 as a function of r for different values
of q. The top mass at the scale fπ ≈ 800 GeV is fixed to

FIG. 1. Top: The mass of the lightest top partner for different
values of jqj as a function of r ¼ m̃T=ms formh ¼ 125 GeV. The
dashed vertical lines indicate the value of r for which βðrÞ
becomes negative. The plots are unchanged for r → −r. Bottom:
Scatter plot of ðmh;mlÞ for jrj ∈ ð0.5; 2Þ (black points) and
r ¼ 0 (gray points). We scan in the range jyL;Rj ∈ ð0.5; 2Þ,
jm̃T j ∈ ð0.5; 4.5Þ TeV, q ∈ ð−2;−0.3Þ and jδ1;2j ∈ ð0; 2Þ TeV.
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150 GeV. The prediction of the MCHM5 corresponds to
the value at r ¼ 0. As we can see, the mass of the lightest
state always increases with r. The dotted vertical lines
signal the point q2r4 → 1, corresponding to β (and thus
the quartic) crossing zero, see Eq. (11). At that point, while
the Higgs boson remains light, ml becomes basically
unbounded. This is, however, never realized exactly in a
realistic numerical scan. Points with q2r4 > 1 are discarded
from the analysis, because leading to a negative β, as can be
inspected from Eq. (11). On the other hand, it is important
to notice that ml is significantly larger than in the MCHM5

even for r and q far from q2r4 ¼ 1. Thus, heavier top
partners do not correspond to fine-tuning the new free
parameter r to a very specific value but rather to a general
prediction of the soft breaking setup. Note that this
behavior is in qualitative contrast to the original MCHM5,
where β becomes small as q → 1, namely, when SOð5ÞR
gets restored, which would, however, lead to a vanishing
top mass.
The results are confirmed numerically by the plot shown

in the bottom panel of Fig. 1, where ðmh;mlÞ are obtained
from a numerical scan, using the exact expression for β.
The window mh ∈ ð100; 125Þ GeV, visualized by the blue
stripe, is considered to take into account running effects to
the scale fπ . The effect of the singlet s can be seen as
effectively reducing the Higgs mass which is consistent
with a certain value of ml, compared to the MCHM5

(depicted by gray points). For instance, ml ≃ 3 TeV is
compatible with mh ≈ 100 GeV in the sMCHM5, whereas
that would require mh ≈ 350 GeV in the MCHM5. This is
just an equivalent way of looking at Eq. (12), where the
ratio βðr2Þ=βð0Þ ¼ m2

hðr2Þ=m2
hð0Þ < 1 gives the correct

estimate for the compression of the Higgs mass. Of course,
a top partner around 3 TeV is also compatible with the
correct Higgs mass in the MCHM5, but that would come
inevitably with a raise in fπ and, consequently, in the
irreducible tuning. A more comprehensive analysis is left
for future work.
General case.—We finally discuss the results for the case

in which all the elementary vectorlike fermions are active
below the condensation scale. To this end, we derived an
expression for β following the procedure of the previous
subsection, setting mv ¼ mw ≡md for simplicity, which
we refer to as βf in the following. The top mass is still well
approximated by Eq. (11).
In addition to q and r, we introduce the elementary

doublet-to-singlet ratio x ¼ md=ms. The mass of the
lightest state ml is now estimated as

m2
l ≃minfm2

Q; m̃
2
T; m

2
s ; m2

dg
¼ m2

Q × min f1; 1=q2; 1=q2r2; x2=q2r2g; ð15Þ

where mQ obeys Eq. (13) with β replaced by βf. We have
checked that βf approaches zero for r → ∞ at fixed x,

corresponding to the case of massless elementary fermions
where no potential is generated.
We identify three different regions depending on x. For

jxj≲ 2, ml can be at most lifted to ≈2 TeV, while for
jxj≳ 4, the results of the singlet case are recovered. As for
the intermediate region, the estimate based on βf is shown
in the upper panel of Fig. 2 for x ¼ 2.7 and fπ ≈ 800 GeV.
The knees signal where s becomes the lightest state. As
before, dotted lines correspond to a vanishing βf, which is
never realized in a realistic scan. Nevertheless, ml can be
generically well above 2 TeV. In the bottom panel of Fig. 2
we show ðmh;mlÞ obtained via a numerical scan. As we can
see, the result is qualitatively the same as in Fig. 1, while
the region with heavy partners is more densely populated in
the blue band compatible with the Higgs mass. (We have
checked that restoring the global symmetry in the linear
mixings is in fact crucial for lifting the top partners, by
allowing for an arbitrary mixing of the new fields filling the
multiplets with the resonances and finding that the point
where the symmetry is restored leads to the largest gain.)

FIG. 2. Top: The mass of the lightest top partner for different
values ofq as a function of rwithmh ¼ 125 GeVand x ¼ 2.7. The
vertical dotted lines indicate r such that βf ¼ 0. Dashed curves
show configurations for which a decrease in ml is driven by the
lightness of the new singlet. Bottom: The mass of the lightest top
partner,ml, as a function ofmh in the sMCHM5 (black points) and
in the MCHM5 (gray points). The scan for the sMCHM5 assumes
jyL;Rj ∈ ð1; 2Þ, q ∈ ð−2;−0.3Þ, jm̃T j ∈ ð5; 10Þ TeV, jrj∈ ð1.5;5Þ
and jδ1;2j ∈ ð0; 2Þ TeV. The doublet masses mw;v are scanned
independently in the range jmw;v=msj ∈ ð2; 4Þ.
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Since the largest ml is typically found above the knee,
heavy top partners favors the case of the singlet s as the
lightest particle. This implies that the spectrum can be
stabilized without requiring the spin-1=2 resonances to lie
much below the naive cutoff of the strong dynamics, as
needed in the conventional case to reproduce the correct
Higgs mass.
Conclusions.—In this Letter, we have proposed a new

way of breaking the Goldstone symmetry in CH scenarios,
which is responsible for a nonvanishing Higgs potential.
Instead of violating it via assuming the (SM-like) fermions
not to fill complete representations of the global symmetry
[SOð5Þ in our case], we break it “softly,” i.e., via finite
vectorlike masses lifting the additional degrees of freedom
that fill the representations beyond direct LHC reach. As
we have shown explicitly for a two-side incarnation, this
allows us to reduce the amount of Goldstone-symmetry
breaking such that for fixed fπ the large top mass can be
reproduced without the necessity of vastly lowering the
masses of the lightest top partners, the latter option starting
to be in tension with LHC searches. For example, for fπ ≈
800 GeV it is possible to lift the lightest partners from
ml ≲ 1 up to ml ∼ 4 TeV, coming closer to the general
scale of CH resonances. While the light top partners might
thus be hard to detect directly at the LHC (and are
generically above current LHC limits), for this setup they
would be fully discoverable at the FCC. In this context, we
finally note that a further phenomenological survey of the
proposed sMCHM would be interesting, including an
analysis of electroweak precision observables, Higgs phys-
ics, and direct searches for (elementary and composite)
fermionic resonances, which is however beyond the scope
of the present Letter.
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