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We perform numerical evolutions of the fully nonlinear Einstein (complex, massive) Klein-Gordon and
Einstein (complex) Proca systems, to assess the formation and stability of spinning bosonic stars. In the
scalar (vector) case these are known as boson (Proca) stars. Firstly, we consider the formation scenario.
Starting with constraint-obeying initial data, describing a dilute, axisymmetric cloud of spinning scalar or
Proca field, gravitational collapse toward a spinning star occurs, via gravitational cooling. In the scalar case
the formation is transient, even for a nonperturbed initial cloud; a nonaxisymmetric instability always
develops ejecting all the angular momentum from the scalar star. In the Proca case, by contrast, no
instability is observed and the evolutions are compatible with the formation of a spinning Proca star.
Secondly, we address the stability of an existing star, a stationary solution of the field equations. In the
scalar case, a nonaxisymmetric perturbation develops, collapsing the star to a spinning black hole. No such
instability is found in the Proca case, where the star survives large amplitude perturbations; moreover, some
excited Proca stars decay to, and remain as, fundamental states. Our analysis suggests bosonic stars have
different stability properties in the scalar (vector) case, which we tentatively relate to its toroidal
(spheroidal) morphology. A parallelism with instabilities of spinning fluid stars is briefly discussed.
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Introduction.—Recent data from gravitational-wave
astronomy [1], as well as from electromagnetic very large
baseline interferometry observations near galactic centers
[2,3], support the black hole (BH) hypothesis: BHs com-
monly populate the cosmos, with masses spanning a range
of (at least) 10 orders of magnitude. Yet, the elusiveness of
the event horizon, the defining property of a BH, rules out
an observational “proof” of their existence. Considering,
thus, models of BH mimickers is a valuable tool to
understanding the uniqueness of BH phenomenology.
Within the landscape of BH mimickers, bosonic stars

(BSs) are particularly well motivated. They arise in simple
and physically sound field theoretical models: complex,
massive, bosonic fields (scalar [4,5] or vector [6]) mini-
mally coupled to Einstein’s gravity. Dynamically, more-
over, static, spherical BSs are viable; for some range of
parameters, the lowest energy stars—the fundamental
family (FF)—have a formation mechanism [7,8] and are
perturbatively stable [6,9–11]. The properties and phenom-
enology of such static BSs have been considered at length
(see, e.g., the reviews [12,13]), including dynamical sit-
uations such as orbiting binaries, from which gravitational
waveforms have been extracted [14–16]. These studies
unveiled a close parallel in the phenomenology of spherical
BSs, regardless of their scalar or vector nature.

Astrophysically, however, rotation is ubiquitous and
should, thus, be included in more realistic models of
BSs. Both scalar [17–19] and vector [6,20] axisymmetric,
spinning BSs (SBSs) have been constructed and some of
their phenomenology has been studied [21,22]. Yet, their
dynamical and stability properties, a key aspect of their
physical viability, have remained essentially unexplored;
see the discussion in Ref. [23].
In this Letter we describe the dynamical properties of

SBSs, obtained from fully nonlinear numerical simulations
of the corresponding Einstein-matter system. We provide
evidence that scalar SBSs in the FF are prone to a
nonaxisymmetric instability. Thus, such stars are transient
states, in a dynamical formation scenario. Assuming an
already formed scalar SBS, on the other hand, it collapses
into a BH after a nonaxially symmetric instability develops.
Vector SBSs (also known as spinning Proca stars), by
contrast, are dynamically robust. In the formation scenario
we find no evidence of an instability. In agreement, for
already formed vector SBSs we observe that (i) even large
perturbations are dissipated away, and (ii) some stars in
excited families decay to the FF where they remain. This
suggests that scalar (vector) SBSs have different dynamical
properties and viability, and their toroidal (spheroidal)
morphology provides a suggestive interpretation.
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SBSs as stationary solutions.—Scalar and vector BSs,
with and without spin, arise as equilibrium states in models
with Lagrangian density L ¼ R=ð16πGÞ þ Lm, where R is
the Ricci scalar, G is Newton’s constant, and

Lm ¼ −∂αϕ∂αϕ̄ − μ2ϕϕ̄; Lm ¼ −
F αβF̄ αβ

4
−
μ2

2
AαĀ

α

ð1Þ

describe the scalar and vector cases, respectively. The
scalar (ϕ) and vector (Aα) fields are complex valued, with
conjugation denoted by an over bar, both with mass μ. As
usual, F ¼ dA. Henceforth, units with G ¼ 1 ¼ c ¼ μ
are used.
Scalar SBSs were first constructed numerically in

Refs. [17,18] as asymptotically flat, stationary, and axi-
symmetric solutions of the above Einstein-Klein-Gordon
system. They are a “mass torus” in general relativity;
see Fig. 1 (left-hand panel). Scalar SBSs form a discrete
set of families of continuous solutions. Each family is
labeled by two integers: m, the azimuthal winding number,
and n, the node (or overtone) number; see, e.g.,
Refs. [12,13,19,24,25]. The FF, which has the lowest
energy, has ðm; nÞ ¼ ð1; 0Þ. Fixing the family, i.e.,
ðm; nÞ, SBSs are characterized by their total mass M
and angular momentum J. They form a one-dimensional
set, often labeled by M, and oscillation frequency ω. The
(dynamically) most interesting solutions occur in between
the Newtonian limit, ω → 1 and M → 0, and the maximal
mass solution. The latter occurs for ω → ωMmax (≃0.775
for the FF) and the Anowitt-Deser-Misner mass becomes
highest, M → Mmax (≃1.315 for the FF). In Table I we list
the properties of two illustrative scalar SBSs used in the
simulations below.
Vector SBSs were first reported as excited states (n ¼ 1)

in Refs. [6,20]. The FF was considered in Refs. [26,27].
The aforementioned description for scalar SBSs applies,
mutatis mutandis. An important distinction, however,
is that the energy distribution is now spheroidal, rather
than toroidal [27]; see Fig. 1 (right-hand panel). Moreover,
for the FF, ωMmax ≃ 0.562 and Mmax ≃ 1.125 [27]. For
the excited family with ðm; nÞ ¼ ð1; 1Þ, ωMmax ≃ 0.839

and Mmax ≃ 1.568 [6]. In Table I we list the properties
of two (three) representative vector SBSs, in the FF
[ðm; nÞ ¼ ð1; 1Þ family].
Dynamical formation of SBSs.—In the spherical case,

numerical simulations established that both scalar [7] and
vector [8] BSs form dynamically from a spherical “cloud”
of dilute scalar or vector field. The cloud collapses due to
its self-gravity. The ejection of energetic scalar or vector
“particles”, dubbed gravitational cooling, allows the for-
mation of a compact object.
For studying the formation of SBSs, with m ¼ 1, the

Hamiltonian, momentum, and (in the vector case) Gauss
constraint are solved by appropriately choosing a Gaussian
radial dependence for the key variables, together with a
nonspherical profile; see Supplemental Material (SM,
Sec. I [28], which includes additional Refs. [29,30]). For
the scalar case, the “matter” initial data are

ϕðt; r; θ;φÞ ¼ Are−r
2=σ2 sin θeiðφ−ωtÞ; ð2Þ

where A, σ are constants and e−iωt is the harmonic
dependence. Besides this unperturbed initial data, we also
evolve perturbed initial data of two types: replacing in
Eq. (2) eiφ → eiφ½1þ A1 cosð2φÞ�, or, alternatively, replac-
ing eiφ → eiφ þ A2e2iφ. A1, A2 are the amplitudes of the
perturbations.
Fully nonlinear numerical evolutions of the Einstein-

matter system using this initial data were carried out with
the EINSTEIN TOOLKIT [40,41]; see SM, Sec. II [28], which
includes additional Refs. [31–39]. Two choices of A were
considered, both of which yield global data for the scalar
cloud ðMsc; JscÞ close to that of equilibrium scalar SBS

solutions. The first and second choices give Mð1Þ
sc ∼ 0.46 ∼

Jð1Þsc and Mð2Þ
sc ∼ 0.89 ∼ Jð2Þsc , respectively. We have run

simulations with both perturbed and unperturbed initial
data, with A1 ¼ 0, 0.001, 0.01, 0.05 and A2 ¼ 0, 0.05.
Typically, σ ¼ 40. The evolutions are typically thousands
of times longer than the dynamical timescale defined by μ.
All evolutions show the emergence of a nonaxisymmet-

ric instability. The time at which the instability kicks in
depends on the type and amplitude of the perturbation, but

even the lowest mass unperturbed model (Mð1Þ
sc ) exhibits

FIG. 1. Surfaces of constant energy density for illustrative
SBSs. Left: Scalar configuration 2S. Right: Vector configuration
1P. The toroidal vs spheroidal nature is clear.

TABLE I. Physical properties of some illustrative SBSs. The
second row identifies if they are scalar (S) or vector or Proca (P).
All solutions have m ¼ 1 and none have an ergo region.

Configuration 1S 2S 1P 2P 3P 4P 5P

Type (S or P) S S P P P P P
n 0 0 0 0 1 1 1
ω 0.90 0.83 0.95 0.90 0.95 0.90 0.85
M 1.119 1.281 0.534 0.726 1.149 1.456 1.564
J 1.153 1.338 0.543 0.750 1.171 1.500 1.622
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nonaxisymmetric features at a sufficiently long timescale
[t ∼Oð104Þ]. The instability generically triggers a larger
ejection of angular momentum than mass, reshaping
the toroidal energy distribution into a spherical one. This
suggests that the asymptotic end state of the cloud
evolution is either a spherical (nonspinning) scalar BS or
even, merely, ejected debris carrying all angular momen-
tum and energy.
As an illustration, Fig. 2 exhibits snapshots of the

equatorial plane evolution of the energy density ρE (left-
hand panels) and angular momentum density ρJ (middle
left-hand panels) for the unperturbed scalar initial data

with mass Mð2Þ
sc [42]. Initially, the collapse preserves axial

symmetry. Around t ∼ 4000, however, the nonaxisymmet-
ric instability is visible, producing a fragmentation event:
the star splits into a roughly symmetric orbiting binary. The
binary is, nonetheless, bound and recollapses to a deformed
spinning star, around t ∼ 6500. This star breaks into two

asymmetric pieces, which again recollapse into a spheroi-
dal star with angular momentum. Around t ∼ 10 000, this
residual, still evolving, star has ðM; JÞ ¼ ð0.49; 0.16Þ,
evaluated up to r ¼ 30, and an oscillation frequency
ω ∼ 0.96. For this ω, the FF static scalar BS has
ðM; JÞ ¼ ð0.45; 0Þ. Thus, this (or a neighbor) static scalar
BS appears to be asymptotically approached, after the
remaining J is shed away.
Now consider the formation of a vector SBS. The

construction of initial data is more complex due to the
Gauss constraint [8,44]. After a 3þ 1 splitting of Aμ,
the key variables are the scalar and three-vector potentials
together with the electric field. The first of these admits
a solution almost identical to Eq. (2), but the others are
more involved; see SM, Sec. I [28]. These initial data can
again be perturbed. We have considered a perturbation
analogous to the first type considered in the scalar case; the
perturbation amplitudes studied were A1 ¼ A2 ¼ 0, 0.05.
Initial data describing a Proca cloud with three different

values of global data were used: Mð1Þ
Pc ∼ 0.46 ∼ Jð1ÞPc ,

Mð2Þ
Pc ∼ 0.56 ∼ Jð2ÞPc , and Mð3Þ

Pc ∼ 0.77 ∼ Jð3ÞPc .
The unperturbed models’ evolutions are instability-free

during the simulations, lasting up to t ∼ 104. This is
illustrated by the third and fourth columns in Fig. 2, which
show snapshots of the time evolution of the unperturbed

Proca cloud Mð2Þ
Pc . The gravitational collapse ejects part

of the mass and angular momentum, which shows the
gravitational cooling mechanism at play. At t ∼ 104 the
star has ðM; JÞ ∼ ð0.25; 0.30Þ, evaluated up to r ¼ 30, and
ω ∼ 0.99. For this ω, the FF vector SBS has ðM; JÞ ¼
ð0.247; 0.249Þ; see SM, Sec. III [28]. Thus, this (or a
neighbor) vector SBS appears to be asymptotically
approached. For the perturbed initial Proca clouds, on
the other hand, the energy density oscillates strongly.
Nonetheless, no sudden loss of angular momentum is
observed, which suggests the end point is still a vector SBS.
Evolution of equilibrium SBSs.—The dichotomy

observed in the formation scenario can be further assessed
by considering the dynamics of SBSs obtained as equilib-
rium solutions of the corresponding Einstein-matter sys-
tem. A perturbative stability analysis of these SBSs, such as
the ones in Refs. [6,9,10] for the spherical case, seems
challenging. Thus, we resort to nonlinear numerical evo-
lutions of the Einstein-matter system, analogous to the ones
in the formation scenario, but now starting with the
equilibrium solutions as initial data. This generalizes the
evolutions in Ref. [43] for nonspinning BSs.
We first consider the scalar SBSs. Figure 3 shows the

time evolution of model 2S. Up to t ∼ 1000 the star remains
essentially undisturbed; then, following the development of
a nonaxisymmetric perturbation, see upper panels, the star
pinches off into two fragments. The resulting binary is
gravitationally bound and collapses into a BH at t ∼ 1200.
This is diagnosed by both the appearance of an apparent

FIG. 2. Time evolution of an equatorial cut of ρE (blue or green)
and ρJ (orange) in the formation scenario of a scalar (left-hand
side) or a vector (right-hand side) SBS.
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horizon, whose mass is shown in the main panel, and the
vanishing of the lapse function α, as seen in the inset of
Fig. 3. A similar evolution is observed for model 1S. This
confirms that scalar SBSs, even in the FF, are prone to a
nonaxisymmetric instability. Unlike the formation scenario,
here the instability leads to a complete gravitational
collapse, likely due to the more compact initial data.
The behavior of the vector SBSs is distinct. FF solutions,

such as models 1P and 2P, show no sign of instability, in the
absence of large perturbations. They neither disperse away
nor collapse to a BH up to t ∼ 4000, the time at which the
drift in the Proca field energy and angular momentum for
model 1P is 2.0% and 2.2%, respectively, whereas for
model 2P, the drift is less than 1%. We further tested the
dynamical robustness of vector SBSs by perturbing models
1P and 2P and by considering some excited states, such as
model 3P − 5P. Figure 4 exhibits the time evolution of two
examples: (i) model 1P with a perturbation of the sort
considered in the formation scenario for the vector case,
and with a sufficiently large amplitude to visibly distort the
star (see first panel), and (ii) the excited model 3P. In the
first case, the perturbation, albeit large enough to deform
the morphology of the star away from its spheroidal shape,
is dissipated away, and the star recovers its shape. In the
second case, the excited state structure of the star is
manifest in the composite, Saturn-like, structure of its
energy distribution [20]. After t ∼ 1000, the star abruptly

loses energy and angular momentum, until t ∼ 3000 when
it asymptotically tends to a new equilibrium configuration;
see SM, Sec. IV [28]. This new configuration has no nodes
and it is close to model 2P. Thus, the star migrates from
the excited family to the FF, where it settles, advocating the
stability of the latter. Excited models 4P and 5P, on the
other hand, collapse to a BH.
Interpretation and further remarks.—The contrasting

dynamical properties of the scalar or vector SBSs break
the phenomenological (qualitative) degeneracy observed
between these two types of BSs in the spherical case. It is
tempting to attribute this contrast to the different morphol-
ogy of these stars, as exhibited in Fig. 1. This interpretation
is partly supported by the analogy with dynamical insta-
bilities in differentially rotating relativistic (neutron) stars
[45]. In that case the existence of a toroidal shape has been
suggested to be a necessary condition for the development
of nonaxisymmetric corotational instabilities [46,47]. In
fact, the pinching instabilities and fragmentation exhibited
in the scalar models above are reminiscent of evolutions
of unstable toroidal fluid stars [48,49], but also of other
corotational instabilities observed in toroidal systems such
as the Papaloizou-Pringle instability in accretion disks [50].
Preliminary results, moreover, indicate that vector SBSs
with m ¼ 2 (which are toroidal) are also unstable. The
analogy with corotational instabilities in relativistic fluid
stars will be further explored elsewhere.

FIG. 3. Time evolution of a scalar SBS, model 2S. Six
sequential snapshots of ρE (top panels). Time runs left to right,
first to second row. Total scalar field energy and apparent horizon
mass (main panel) and lapse function (inset).

FIG. 4. Time evolution of vector SBSs. Equatorial cut of ρE
(blue) and ρJ (orange) for the FF model 1P with a perturbation
(left-hand side) and the excited model 3P (right-hand side).
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The instability of scalar SBSs may explain the inability
to find them as end points in the evolution of orbiting
binaries of (nonspinning) BSs [51,52]. By the same token,
however, vector SBSs should form in the equivalent vector
scenarios. This suggests revisiting the work in Ref. [16]
using constraint-abiding initial data. A related question
pertains to the impact of matter self-interactions in the
dynamics reported herein.
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