
 

Bifurcations Caused by Feedback between Voltage and Intracellular Ion Concentrations
in Ventricular Myocytes

Julian Landaw and Zhilin Qu*

Department of Medicine and Department of Biomathematics, University of California, Los Angeles, California 90095, USA

(Received 6 June 2019; published 21 November 2019)

We develop an iterated map model to describe the bifurcations and complex dynamics caused by the
feedback between voltage and intracellular Ca2þ and Naþ concentrations in paced ventricular myocytes.
Voltage and Ca2þ can form either a positive or a negative feedback loop, while voltage and Naþ form a
negative feedback loop. Under certain diseased conditions, when the feedback between voltage and Ca2þ is
positive, Hopf bifurcations occur, leading to periodic oscillatory behaviors. When this feedback is negative,
period-doubling bifurcation routes to alternans and chaos occur.
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In excitable cells [1], ion concentration gradients across
the cell membrane are required for a negative (polarized)
resting potential and excitability. The major ions are
sodium ion (Naþ), potassium ion (Kþ), and calcium ion
(Ca2þ), with concentrations in the extracellular space being
roughly 140, 4, and 1.5 mM, and in intracellular space
being roughly 10 mM, 150 mM, and 100 nM, respectively.
These ion gradients are primarily maintained by ion
pumps, namely, the Naþ-Kþ pump and the Naþ-Ca2þ
exchange (NCX). During an action potential (AP), Naþ and
Ca2þ enter the cell via voltage-gated Naþ channels and
Ca2þ channels, respectively, and Kþ exits the cell via Kþ
channels, which then are extruded out or brought into the
cell by the pumps, maintaining ion homeostasis of the cell.
Since the intracellular ion concentrations affect both ionic
currents via ion channels and pumps, feedback loops form
between voltage and the ion concentrations. Moreover, the
ion channels and different intracellular ion concentration
dynamics exhibit distinct timescales. The feedback loops
and the multiple timescales can result in very interesting
dynamics, such as bursting behaviors seen in many
biological cells, including neurons [2–4], pancreatic β cells
[2], and cardiac cells [5–7]. Although some of the complex
AP dynamics have been understood via bifurcation analy-
ses, much work is still needed to reveal how the feedback
and different timescales interact to give rise to these
dynamics.
In recent studies [8,9], oscillatory behaviors between

APs without early afterdepolarizations (EADs) and APs
with EADs have been shown in ventricular myocytes in
computer simulations and experiments. It is postulated that
this behavior is a result of slow intracellular Naþ concen-
tration (½Naþ�i) change and feedback between voltage and
the ion concentrations of Naþ and Ca2þ, namely, a positive
feedback loop between voltage and intracellular Ca2þ

concentration (½Ca2þ�i) and a negative feedback loop

between voltage and ½Naþ�i. However, a rigorous analysis
has not been carried out on how the feedback and multiple
timescales give rise to complex dynamics in ventricular
myocytes. In this study, we develop a low-dimensional
iterated map model that accounts for the different timescales
and feedback loops. The iterated map model can accurately
capture the complex dynamics of the high-dimensional
AP model and reveal the underlying mechanisms and
bifurcations, including bistability, Hopf bifurcations, and
period-doubling routes to chaos.
To provide insight into the development of the iterated

map model and to validate its predictions, we carry out
simulations using a detailed ventricular AP model by ten
Tusscher et al. [10]. The voltage (V) is described by

Cm
dV
dt

¼ −Iion þ Isti ; ð1Þ

where Cm ¼ 1 μF=cm2 is the membrane capacitance and
Isti is the stimulus current density, which is a 2 ms square
pulse of amplitude 52 μA=cm2 with a period T. Iion is the
total ionic current density, which is composed of many
individual ionic currents, i.e., Iion ¼ INaþ IK1þ Itoþ
IKrþ IKsþ ICa;Lþ INCXþ INaKþ IpCaþ IpKþ IbCaþ IbNa.
The detailed formualtions of these currents are in the
original article by ten Tusscher et al. [10]. To generate
EADs and the oscillatory action potential duration (APD)
dynamics, we made the following modifications: Ito and IKr
were removed, the maximum conductance of IKs was
reduced, i.e., GKs ¼ 0.125 mS=cm2, and ICa;L was sub-
stituted by the formulation by Huang et al. [11] with
GCa;L ¼ 0.000 14 cm3=μF=s. We varied the maximum
NCX activity (kNCX) to result in different AP dynamics.
EADs do not occur under normal conditions but can
occur under certain diseased conditions [12], such as
long QT syndromes and heart failure. In long QT
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syndromes [13,14], one or more (due to gene mutations or
drug interactions) of the outward currents are reduced, and
in heart failure [15], many of the outward currents are
reduced while the NCX activity is enhanced. These alter-
ations promote EADs [16–18] and EAD-related complex
nonlinear dynamics [19–21].
Simulations of the AP model show the same oscillatory

behavior as in previous studies [8,9]. Figure 1(a) is a
voltage trace showing oscillatory transitions between APs
with EADs and APs without EADs at T ¼ 2.5 s. In this
trace, an EAD occurs in each AP from 20 to 67.5 s (total
19 beats), and APD is long. No EAD occurs in the APs
from 67.5 to 175 s (total 43 beats), and APD is short. The
total length of this combined EAD and no EAD phase is
155 s or 62 beats. This repeats as time goes on, giving rise
to a periodic oscillatory behavior. We denote APD of the
nth beat as an, and ½Ca2þ�i and ½Naþ�i at the beginning of
this beat as cn and sn, respectively. Figure 1(b) shows an,
cn, and sn versus beat number n from the same simulation
in Fig. 1(a). The period of oscillation is 62 beats. As APD
changes from short to long, both cn and sn elevate, and as
APD changes from long to short, both cn and sn decay.
Note that cn responds much faster than sn to the APD
changes. Figure 1(c) shows a bifurcation diagram plotting
an versus T, in which the APD is oscillatory between T ¼
2.35 s and T ¼ 3.4 s, but stable for smaller or larger T
outside this region. We also carried out simulations by
clamping ½Naþ�i at different levels [Fig. 1(d)], revealing
that APD is bistable. This bistable phenomenon agrees with
the results from previous studies [8,9].
To reveal the bifurcations that lead to this behavior

and other dynamics caused by the feedback and timescales,
we developed an iterated map model to describe the

dynamics of an, cn, and sn. The equations of the iterated
maps are

an ¼ gðcn; snÞ ; ð2Þ

cnþ1 − c̄ ¼ ð1 − βcÞðcn − c̄Þ; ð3Þ

snþ1 − s̄ ¼ ð1 − βsÞðsn − s̄Þ: ð4Þ
Equation (2) describes the dependence of an on cn and sn.
Equations (3) and (4) describe the dependences of cnþ1 and
snþ1 on their values in the previous beat with c̄ ¼ c̄ðan; TÞ
and s̄ ¼ s̄ðan; TÞ being their steady states under constant an
and T. βc and βs are two parameters determining how fast
cn and sn approach their steady states. When βc ¼ 1 or
βs ¼ 1, cn or sn instantaneously reaches its steady state.
When βc ¼ 0 or βs ¼ 0, cn or sn will never reach its
steady state, which corresponds to the case of holding
the concentration constant or clamped. Since sn changes
much more slowly than cn [see e.g., Fig. 1(b)], βs ≪ βc;
therefore,

0 < βs ≪ βc < 1: ð5Þ
We used βc ¼ 0.32 and βs ¼ 0.01 unless specified.
The rationale for choosing linear iterated map equations

for cn and sn is as follows: for a fixed T, after a sudden
shortening of APD, the ion concentration decays exponen-
tially toward a new steady state [22]. Based on our
simulations, the steady state concentrations increase with
APD but decrease with T. We have the following equations
for c̄ and s̄:

c̄ ¼ c1ðTÞan þ c0 ¼
0.2

T þ 2.1
an þ c0 ; ð6Þ

s̄ ¼ s1ðTÞan þ s0 ¼
0.03

T þ 2.8
an þ s0 ; ð7Þ

where c0 and s0 are their values for T → ∞, corresponding
to the cell in quiescence. We set c0 ¼ 0 and s0 ¼ 7 mM.
A key step is to define the function g in Eq. (2). As

shown in our previous study [22], when ½Naþ�i is clamped
at a constant, g is a sole function of cn, and thus is one
dimensional. However, here g is a two-dimensional func-
tion depending on both cn and sn, which becomes non-
trivial to be defined. To gain insight into how an depends on
cn and sn, we plot an (in color scale) versus cn and sn in
Fig. 2(a) using the data from the simulations shown in
Fig. 1. In a wide range of cn and sn, the iso-APD contour
lines are almost linear, indicating that if one uses the
following transformation:

zn ¼ sn þ αcn ; ð8Þ
the two-dimensional function may be reduced into a one
dimensional one as

FIG. 1. (a) Voltage, ½Ca2þ�i, and ½Naþ�i traces showing oscil-
latory transition between APs with EADs and APs without
EADs. Asterisk marks the APs with EADs. T ¼ 2.5 s and
kNCX ¼ 5 nA=pF. (b) an, cn (and peak ½Ca2þ�i), and sn versus
n from the same simulation in (a). (c) Bifurcation diagram
showing APD versus T. 100 APDs are plotted for each T.
(d) APD versus sn for T ¼ 2.5 s when ½Naþ�i is clamped at
constant values.
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an ¼ gðznÞ: ð9Þ

Figure 2(b) replots the data of Fig. 2(a) using zn ¼
sn − 0.013cn. Under this transformation, the data points
indeed fall in a very narrow band, indicating that Eq. (9) can
well describe the data.
Since both c̄ and s̄ are positively related to an [see

Eqs. (6) and (7)], whether the feedback loops between APD
and ½Naþ�i and ½Ca2þ�i are positive or negative is deter-
mined by the dependence of an on cn and sn. In ventricular
myocytes, in general, a higher ½Naþ�i gives rise to a smaller
APD since a higher ½Naþ�i results in a larger INaK and a
smaller INCX, and thus an depends on sn negatively. This
results in a negative feedback loop between APD and
½Naþ�i. However, the relation between APD and ½Ca2þ�i is
more complex. APD can either negatively or positively
depend on ½Ca2þ�i. By the way we choose zn in Eq. (8), an
negatively depends on zn [note that the data in Fig. 2(b)
are nonmonotonic], so α < 0 means an depends on cn
positively, indicating that the feedback between APD
and ½Ca2þ�i is positive. α > 0 means an depends on cn
negatively, indicating that the feedback between APD and
½Ca2þ�i is negative.
To examine if the iterated map model can capture the

dynamics of theAPmodel, we obtained a g function [inset of
Fig 2(b)] using a linear interpolation of points manually
chosen in the data set in Fig. 2(b) to assure a one-to-one
correspondence between an and zn. We then used this
linearly interpolated function for simulations of the iterated
map model. Figure 2(c) shows an, cn, and sn versus n for
T ¼ 2.5 s and Fig. 2(d) shows a bifurcation diagram by
plotting an versus T. These results closely match those of the
AP model shown in Figs. 1(b) and 1(c), indicating that the

low-dimensional iterated map model can accurately capture
the dynamics of the high-dimensional AP model.
We then used the iterated map model to perform stability

and bifurcation analyses. Note that only two equations of
the three equations are free, and one can easily eliminate an
by substituting an in Eqs. (3) and (4) using Eq. (2) [or
Eq. (9)]. The Jacobian matrix J for Eqs. (3) and (4) is

J ¼
�
1 − βc þ c1αβcg0 c1βcg0

s1αβsg0 1 − βs þ s1βsg0

�
; ð10Þ

where g0 ¼ dg=dz. Defining τ ¼ trðJÞ and Δ ¼ detðJÞ to
be the trace and determinant of J, then the two eigenvalues
are λ ¼ ðτ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − 4Δ

p
Þ=2. Although the function g

obtained from the AP model is nonmonotonic, for sim-
plicity, we assume that g in general is a decreasing function
of zn such that

g0 < 0 ð11Þ

always holds, such as in a descending Hill function [e.g.,
Eq. (17)]. Using this Jacobian combined with the con-
ditions of Eqs. (5) and (11), one obtains the following
bifurcations and stability criteria:
(1) τ2 − 4Δ < 0, Hopf bifurcation.—In this case, the

eigenvalues are a pair of complex conjugates, i.e.,
λ ¼ ½τ � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi−ðτ2 − 4ΔÞ
p

�=2. When jλj ¼ ffiffiffiffi
Δ

p
> 1, insta-

bility occurs via a Hopf bifurcation, which leads to the
following stability criterion:

½s1βsð1 − βcÞ þ c1αβcð1 − βsÞ�g0 > βc þ βs þ βcβs. ð12Þ

A special case is when βs ¼ 0, corresponding to ½Naþ�i
being clamped at a constant. Under this condition, the
stability criterion in Eq. (12) simplifies to

c1αg0 > 1: ð13Þ
This is exactly the condition for bistability to occur in the
system when ½Naþ�i is clamped, which can be obtained by
setting sn to a constant in Eqs. (2)–(4). Since g0 < 0, and
thus α < 0 (or a positive feedback loop between APD and
½Ca2þ�i) is required for bistability to occur. This stability
boundary is plotted as the red dashed line in Fig. 3. We also
plotted the stability boundaries for βs ¼ 0.01 and βs ¼ 0.2
in red solid lines. A larger βs requires a steeper g function
for the Hopf bifurcation to occur, indicating that a faster
½Naþ�i accumulation rate suppresses this instability.
Positive feedback between APD and ½Ca2þ�i is always
required (α < 0) for a Hopf bifurcation.
(2) τ2 − 4Δ > 0, period-doubling bifurcation.—In this

case, the two eigenvalues are real and when the smaller one
λ ¼ ðτ − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ2 − 4Δ
p

Þ=2 < −1, or τ þ 2 <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − 4Δ

p
, insta-

bility occurs via a period-doubling bifurcation, which leads
to the following stability criterion:

FIG. 2. (a) an (color scale) versus sn and cn from the simulation
data from Fig. 1. (b) an versus zn after the transform zn ¼
sn − 0.013cn. Inset (black) is a piecewise linear function based on
the data. (c) an, cn, and sn versus n from the iterated map model
using the g function in the inset in (b). (d) Bifurcation diagram
showing an versus T from the iterated map model.
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½s1βsð2 − βcÞ þ c1αβcð2 − βsÞ�g0 < −ð2 − βcÞð2 − βsÞ
.ð14Þ

When βs ¼ 0, Eq. (14) becomes

c1αβcg0 < −2þ βc ; ð15Þ

which is the blue dashed line in Fig. 3. We also plotted the
stability boundaries for βs ¼ 0.01 and βs ¼ 0.2 in blue
solid lines. A larger βs requires a less steep g function for
the period-doubling bifurcation to occur, indicating a faster
½Naþ�i accumulation rate promotes this instability. This
instability mainly occurs when α > 0, i.e., when the feed-
back between APD and ½Ca2þ�i is negative.
(3) τ2 − 4Δ > 0, saddle-node bifurcation.—In this

case, when the larger of the two eigenvalues λ ¼
ðτ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − 4Δ

p
Þ=2 > 1, or 2 − τ <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2 − 4Δ

p
, instability

occurs via a saddle-node bifurcation, leading to the
condition

ðs1 þ c1αÞg0 > 1: ð16Þ

Note that Eq. (16) is independent of βc and βs. As shown in
Fig. 3, this stability boundary is below the boundary of
Hopf bifurcation, and one only observes the Hopf bifurca-
tion induced oscillatory behavior. But bistability can be
observed when the stability boundary is above the boun-
dary of Hopf bifurcation (open arrow in Fig. 3) when α is
more negative and the ½Naþ�i change is relatively fast
(βs > 0.2). This is unlikely in ventricular myocytes since

½Naþ�i accumulates or decays very slowly and thus βs is
small, on the order of 0.01.
For more detailed theoretical analyses and computer

simulations using the map model, we use a Hill function for
g in Eq. (9) as

an ¼ gðznÞ ¼ amin þ
amax − amin

1þ ðznkdÞh
: ð17Þ

Based on Fig. 2(b), we chose amax ¼ 1 s, amin ¼ 0.6 s, and
h ¼ 500. kd is the dissociation constant of the Hill function.
With the analytical function Eq. (17), one can easily

obtain the steady state of the map model. Using Eqs. (3),
(6), and (17), one obtains for the steady state (cs) of cn as

cs ¼
0.2

T þ 2.1

�
amin þ

amax − amin

1þ ðsnþαcs
kd

Þh
�
þ c0 : ð18Þ

If sn is clamped at a certain constant, the solution of
Eq. (18) can be bistable when α < 0, agreeing with the
results of the AP model [Fig. 1(c)]. Figure 4 shows results
of the map model using the g function in Eq. (17).
Figure 4(a) shows the unstable regions in the α-T space,
showing an unstable region when α < 0 (unstable I) and
another when α > 0 (unstable II). Figure 4(b) shows a
bifurcation diagram across the two unstable regions for
T ¼ 2.5 s. In unstable region I, only periodic oscillatory
behavior is observed [Fig. 4(c)]. In unstable region II,
period-doubling routes to chaos occur, leading to high
periodicity and chaos [Fig. 4(d)]. Compared to unstable
region I, even though APD varies in roughly the same

FIG. 3. Stability boundaries of the steady state in the g0-α space.
βc ¼ 0.32 and T ¼ 2.5 s. Blue lines are the boundaries for
period-doubling bifurcation for βs ¼ 0.2 (thick solid), βs ¼
0.01 (thin solid), and βs ¼ 0 (dashed). Red lines are the
boundaries for Hopf bifurcation for βs ¼ 0.2 (thick solid), βs ¼
0.01 (thin solid), and βs ¼ 0 (dashed). The cyan line is the
boundary for saddle-node bifurcation. The steady state is stable
above but unstable below these boundaries. The open arrow
indicates the intersection of the Hopf and saddle-node bifurca-
tions.

FIG. 4. (a) Unstable regions in α-T space, obtained from the
iterated map model using the Hill function Eq. (17). (b) Bifurca-
tion diagrams showing an versus α using the iterated map model
for T ¼ 2.5 s. (c) An example of oscillatory behavior from
unstable region I with α ¼ −0.015. (d) An example of chaotic
behavior from unstable region II with α ¼ 0.1. Note: We alter
kNCX to alter the behavior of the AP model (see Fig. 5), which
changes not only the α value but also the value of kd [e.g.,
compare Fig. 2(b) to Fig. 5(b)]. To match the bifurcation
behaviors, we set kd as a function of α, i.e., kd ¼ 11.5þ 28α.

PHYSICAL REVIEW LETTERS 123, 218101 (2019)

218101-4



range, the ½Ca2þ�i variation is attenuated and ½Naþ�i
exhibits a very small variation.
One can change the feedback from positive to negative

and thus the dynamical behaviors in the AP model by
altering kNCX. Figure 5(a) shows the AP dynamics vesus
kNCX for T ¼ 2.5 s, which shows the same bifurcations as
in Fig. 4(b). When kNCX is in the range from 0.75 to
1.5 nA=pF, period-doubling routes to chaos occur, inter-
mingled with periodic windows, corresponding to unstable
region II in Fig. 4. If we plot an against zn using the
transform Eq. (8), α > 0 is needed [Fig. 5(b)], indicating
that the feedback between APD and ½Ca2þ�i is indeed
negative. After a stable region for kNCX between 1.5 to
2.1 nA=pF, another unstable region (from 2.1 to
5.6 nA=pF) occurs. Periodic oscillations occur in this
whole region, corresponding to unstable region I in
Fig. 4. In this region, the feedback between APD
and ½Ca2þ�i is always positive [α < 0, as in Fig. 2(b)].
Also agreeing with the map results shown in Fig. 4, the
APD variations are in the same range in the two regions, but
the ½Ca2þ�i and ½Naþ�i varations are different. In unstable
region II, the ½Ca2þ�i variation is attenuated, and ½Naþ�i
exhibits almost no variation.
In conclusion, the iterated map model incorporating the

multiple timescales and the feedback between APD and
½Ca2þ�i and ½Naþ�i can well describe the bifurcations
and complex dynamics in paced ventricular myocytes.
Specifically, under diseased conditions in which EADs
are present and the feedback between APD and ½Ca2þ�i is
positive, Hopf bifurcations occur, leading to periodic
oscillatory behaviors. When this feedback is negative,
period-doubling bifurcation routes to alternans and chaos

occur. The bifurcations from the map model may provide
mechanistic insight into slow time course or delay (or
memory) induced period doubling [23] and oscillations
[8,24] shown in experiments. Differing frommany previous
theoretical studies [24–28] on the effects of memory, our
iterated map model incorporates the specific feedback
loops and timescales of ½Ca2þ�i and ½Naþ�i accumulation,
which reveals the bifurcations leading to the complex AP
dynamics in ventricular myocytes caused by feedback
between APD and ½Ca2þ�i and ½Naþ�i. These cellular AP
dynamics may play important roles in cardiac arrhythmo-
genesis in cardiac tissue [29].
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