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Bifurcations Caused by Feedback between Voltage and Intracellular Ion Concentrations
in Ventricular Myocytes
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We develop an iterated map model to describe the bifurcations and complex dynamics caused by the
feedback between voltage and intracellular Ca?* and Na* concentrations in paced ventricular myocytes.

Voltage and Ca?* can form either a positive or a negative feedback loop, while voltage and Na* form a

negative feedback loop. Under certain diseased conditions, when the feedback between voltage and Ca* is
positive, Hopf bifurcations occur, leading to periodic oscillatory behaviors. When this feedback is negative,
period-doubling bifurcation routes to alternans and chaos occur.
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In excitable cells [1], ion concentration gradients across
the cell membrane are required for a negative (polarized)
resting potential and excitability. The major ions are
sodium ion (Na™), potassium ion (K¥*), and calcium ion
(Ca”*), with concentrations in the extracellular space being
roughly 140, 4, and 1.5 mM, and in intracellular space
being roughly 10 mM, 150 mM, and 100 nM, respectively.
These ion gradients are primarily maintained by ion
pumps, namely, the Na*-K* pump and the Na™-Ca’*
exchange (NCX). During an action potential (AP), Na* and
Ca’* enter the cell via voltage-gated Nat channels and
Ca* channels, respectively, and K* exits the cell via KT
channels, which then are extruded out or brought into the
cell by the pumps, maintaining ion homeostasis of the cell.
Since the intracellular ion concentrations affect both ionic
currents via ion channels and pumps, feedback loops form
between voltage and the ion concentrations. Moreover, the
ion channels and different intracellular ion concentration
dynamics exhibit distinct timescales. The feedback loops
and the multiple timescales can result in very interesting
dynamics, such as bursting behaviors seen in many
biological cells, including neurons [2—4], pancreatic 3 cells
[2], and cardiac cells [5-7]. Although some of the complex
AP dynamics have been understood via bifurcation analy-
ses, much work is still needed to reveal how the feedback
and different timescales interact to give rise to these
dynamics.

In recent studies [8,9], oscillatory behaviors between
APs without early afterdepolarizations (EADs) and APs
with EADs have been shown in ventricular myocytes in
computer simulations and experiments. It is postulated that
this behavior is a result of slow intracellular Na* concen-
tration ([Na*];) change and feedback between voltage and
the ion concentrations of Na* and Ca?™, namely, a positive
feedback loop between voltage and intracellular Ca’**
concentration ([Ca’*];) and a negative feedback loop
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between voltage and [Na'],. However, a rigorous analysis
has not been carried out on how the feedback and multiple
timescales give rise to complex dynamics in ventricular
myocytes. In this study, we develop a low-dimensional
iterated map model that accounts for the different timescales
and feedback loops. The iterated map model can accurately
capture the complex dynamics of the high-dimensional
AP model and reveal the underlying mechanisms and
bifurcations, including bistability, Hopf bifurcations, and
period-doubling routes to chaos.

To provide insight into the development of the iterated
map model and to validate its predictions, we carry out
simulations using a detailed ventricular AP model by ten
Tusscher et al. [10]. The voltage (V) is described by

dv

Cc, —
md[

:_Iion+lsti’ (1)

where C,, = 1 yuF/cm? is the membrane capacitance and
I; 1s the stimulus current density, which is a 2 ms square
pulse of amplitude 52 yA/cm? with a period T. I, is the
total ionic current density, which is composed of many
individual ionic currents, i.e., lioy =1Ina+ g1+ 1o+
Ix, +1Ixs + Icar + Incx + Inak + L pca + L px + Lpca + IpNa-
The detailed formualtions of these currents are in the
original article by ten Tusscher et al. [10]. To generate
EADs and the oscillatory action potential duration (APD)
dynamics, we made the following modifications: /,, and Iy,
were removed, the maximum conductance of I, was
reduced, i.e., Gg, = 0.125 mS/cm?, and Ic,, was sub-
stituted by the formulation by Huang et al. [11] with
Gear = 0.000 14 cm?/uF/s. We varied the maximum
NCX activity (kycx) to result in different AP dynamics.
EADs do not occur under normal conditions but can
occur under certain diseased conditions [12], such as
long QT syndromes and heart failure. In long QT
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FIG. 1. (a) Voltage, [Ca®>*];, and [Na*], traces showing oscil-

latory transition between APs with EADs and APs without
EADs. Asterisk marks the APs with EADs. T=2.5s and
knex = 5 nA/pF. (b) a,, ¢, (and peak [Ca®*],), and s, versus
n from the same simulation in (a). (c) Bifurcation diagram
showing APD versus 7. 100 APDs are plotted for each T.
(d) APD versus s, for T =2.5s when [Na'], is clamped at
constant values.

syndromes [13,14], one or more (due to gene mutations or
drug interactions) of the outward currents are reduced, and
in heart failure [15], many of the outward currents are
reduced while the NCX activity is enhanced. These alter-
ations promote EADs [16-18] and EAD-related complex
nonlinear dynamics [19-21].

Simulations of the AP model show the same oscillatory
behavior as in previous studies [8,9]. Figure 1(a) is a
voltage trace showing oscillatory transitions between APs
with EADs and APs without EADs at 7 = 2.5 s. In this
trace, an EAD occurs in each AP from 20 to 67.5 s (total
19 beats), and APD is long. No EAD occurs in the APs
from 67.5 to 175 s (total 43 beats), and APD is short. The
total length of this combined EAD and no EAD phase is
155 s or 62 beats. This repeats as time goes on, giving rise
to a periodic oscillatory behavior. We denote APD of the
nth beat as a,,, and [Ca’>*]; and [Na']; at the beginning of
this beat as ¢, and s, respectively. Figure 1(b) shows a,,
¢,, and s, versus beat number n from the same simulation
in Fig. 1(a). The period of oscillation is 62 beats. As APD
changes from short to long, both ¢, and s,, elevate, and as
APD changes from long to short, both ¢, and s, decay.
Note that ¢, responds much faster than s, to the APD
changes. Figure 1(c) shows a bifurcation diagram plotting
a, versus T, in which the APD is oscillatory between T =
2.35s and T = 3.4 s, but stable for smaller or larger T
outside this region. We also carried out simulations by
clamping [Na']; at different levels [Fig. 1(d)], revealing
that APD is bistable. This bistable phenomenon agrees with
the results from previous studies [8,9].

To reveal the bifurcations that lead to this behavior
and other dynamics caused by the feedback and timescales,
we developed an iterated map model to describe the

dynamics of a,, c,, and s,. The equations of the iterated
maps are

ay :g(cn»sn)’ (2)
Cntl —C= (l_ﬁc)(cn_a)’ (3)
Snt1 —5= (1 _:Bs)<sn - E) (4)

Equation (2) describes the dependence of a,, on ¢, and s,,.
Equations (3) and (4) describe the dependences of ¢, | and
S,+1 on their values in the previous beat with ¢ = ¢(a,,, T)
and 5 = 5(a,,, T) being their steady states under constant a,,
and 7. . and f, are two parameters determining how fast
¢, and s, approach their steady states. When . =1 or
ps =1, ¢, or s, instantaneously reaches its steady state.
When . =0 or f, =0, ¢, or s, will never reach its
steady state, which corresponds to the case of holding
the concentration constant or clamped. Since s, changes
much more slowly than ¢, [see e.g., Fig. 1(b)], f, < SB.;
therefore,

0<p,<p. <1. (5)

We used f. = 0.32 and f; = 0.01 unless specified.

The rationale for choosing linear iterated map equations
for ¢, and s, is as follows: for a fixed 7, after a sudden
shortening of APD, the ion concentration decays exponen-
tially toward a new steady state [22]. Based on our
simulations, the steady state concentrations increase with
APD but decrease with 7. We have the following equations
for ¢ and s:

_ 0.2
C:CI(T)Cln‘FCQ:mCIn—FC(), (6)
0.03
§:S1(T)an+sozman+sm (7)

where c( and s are their values for 7 — oo, corresponding
to the cell in quiescence. We set ¢y = 0 and sy = 7 mM.

A key step is to define the function ¢ in Eq. (2). As
shown in our previous study [22], when [Na']; is clamped
at a constant, g is a sole function of ¢,, and thus is one
dimensional. However, here ¢ is a two-dimensional func-
tion depending on both ¢, and s,, which becomes non-
trivial to be defined. To gain insight into how «,, depends on
¢, and s,, we plot a, (in color scale) versus ¢, and s,, in
Fig. 2(a) using the data from the simulations shown in
Fig. 1. In a wide range of ¢, and s,, the iso-APD contour
lines are almost linear, indicating that if one uses the
following transformation:

Zp =98, tac,, (8)

the two-dimensional function may be reduced into a one
dimensional one as
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FIG. 2. (a)a, (color scale) versus s, and ¢, from the simulation

data from Fig. 1. (b) a, versus gz, after the transform z, =
s, — 0.013c¢,,. Inset (black) is a piecewise linear function based on
the data. (c) a,,, ¢,, and s,, versus n from the iterated map model
using the g function in the inset in (b). (d) Bifurcation diagram
showing a, versus T from the iterated map model.

ap = g(zn) . (9)

Figure 2(b) replots the data of Fig. 2(a) using z, =
s, —0.013¢,. Under this transformation, the data points
indeed fall in a very narrow band, indicating that Eq. (9) can
well describe the data.

Since both ¢ and 5 are positively related to a, [see
Egs. (6) and (7)], whether the feedback loops between APD
and [Na']; and [Ca’"]; are positive or negative is deter-
mined by the dependence of a,, on ¢,, and s,,. In ventricular
myocytes, in general, a higher [Na™]|, gives rise to a smaller
APD since a higher [Na']; results in a larger Iy,x and a
smaller Iycy, and thus a, depends on s, negatively. This
results in a negative feedback loop between APD and
[Na*];. However, the relation between APD and [Ca®"]; is
more complex. APD can either negatively or positively
depend on [Ca®*];. By the way we choose z,, in Eq. (8), a,,
negatively depends on z,, [note that the data in Fig. 2(b)
are nonmonotonic], so a <0 means a, depends on c,
positively, indicating that the feedback between APD
and [Ca?"], is positive. @ > 0 means a,, depends on c,
negatively, indicating that the feedback between APD and
[Ca®*], is negative.

To examine if the iterated map model can capture the
dynamics of the AP model, we obtained a g function [inset of
Fig 2(b)] using a linear interpolation of points manually
chosen in the data set in Fig. 2(b) to assure a one-to-one
correspondence between a, and z,. We then used this
linearly interpolated function for simulations of the iterated
map model. Figure 2(c) shows a,, c,, and s, versus n for
T =2.5s and Fig. 2(d) shows a bifurcation diagram by
plotting a,, versus T'. These results closely match those of the
AP model shown in Figs. 1(b) and 1(c), indicating that the

low-dimensional iterated map model can accurately capture
the dynamics of the high-dimensional AP model.

We then used the iterated map model to perform stability
and bifurcation analyses. Note that only two equations of
the three equations are free, and one can easily eliminate a,
by substituting a, in Egs. (3) and (4) using Eq. (2) [or
Eq. (9)]. The Jacobian matrix J for Egs. (3) and (4) is

J— <1 _ﬁc + Claﬂcg/
B Slaﬁsg/

Clﬁcg/ )’ (10)
1 _ﬁs + slﬂsg/

where ¢ = dg/dz. Defining 7 = tr(J) and A = det(J) to
be the trace and determinant of J, then the two eigenvalues
are A= (r+ V7> —4A)/2. Although the function g¢
obtained from the AP model is nonmonotonic, for sim-
plicity, we assume that g in general is a decreasing function
of z, such that

g <0 (11)

always holds, such as in a descending Hill function [e.g.,
Eq. (17)]. Using this Jacobian combined with the con-
ditions of Egs. (5) and (11), one obtains the following
bifurcations and stability criteria:

(1) 72 —4A < 0, Hopf bifurcation.—In this case, the
eigenvalues are a pair of complex conjugates, i.e.,
A= [t+iy/—(* —4A)]/2. When |A| = VA > 1, insta-
bility occurs via a Hopf bifurcation, which leads to the
following stability criterion:

[slﬂs(l _ﬁc) + Claﬁc(l _:Bs)]g/ > ﬂc +ﬂs +ﬁcﬂs‘ (12)

A special case is when f; = 0, corresponding to [Na™],
being clamped at a constant. Under this condition, the
stability criterion in Eq. (12) simplifies to

ciag > 1. (13)

This is exactly the condition for bistability to occur in the
system when [Na™], is clamped, which can be obtained by
setting s,, to a constant in Egs. (2)—(4). Since ¢ < 0, and
thus a < 0 (or a positive feedback loop between APD and
[Ca?*],) is required for bistability to occur. This stability
boundary is plotted as the red dashed line in Fig. 3. We also
plotted the stability boundaries for #; = 0.01 and ; = 0.2
in red solid lines. A larger f3, requires a steeper g function
for the Hopf bifurcation to occur, indicating that a faster
[Na®], accumulation rate suppresses this instability.
Positive feedback between APD and [Ca’*]; is always
required (@ < 0) for a Hopf bifurcation.

(2) 7> —4A > 0, period-doubling bifurcation.—In this
case, the two eigenvalues are real and when the smaller one
A= (r—V1*—4A)/2 < —1,0r7 + 2 < V7> — 4A, insta-
bility occurs via a period-doubling bifurcation, which leads
to the following stability criterion:
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FIG. 3. Stability boundaries of the steady state in the ¢-a space.

P.=0.32 and T =2.5s. Blue lines are the boundaries for
period-doubling bifurcation for f; = 0.2 (thick solid), p; =
0.01 (thin solid), and f, =0 (dashed). Red lines are the
boundaries for Hopf bifurcation for f; = 0.2 (thick solid), f; =
0.01 (thin solid), and f; = 0 (dashed). The cyan line is the
boundary for saddle-node bifurcation. The steady state is stable
above but unstable below these boundaries. The open arrow
indicates the intersection of the Hopf and saddle-node bifurca-
tions.

[Slﬁs(z _/}c) + Claﬁc(z _ﬁs)].d < _(2 _/))c)(z _/))s)
(14)

When g, = 0, Eq. (14) becomes
Claﬂcg/ <=2 +ﬂc ’ (15)

which is the blue dashed line in Fig. 3. We also plotted the
stability boundaries for f; = 0.01 and B, = 0.2 in blue
solid lines. A larger f, requires a less steep g function for
the period-doubling bifurcation to occur, indicating a faster
[Na™], accumulation rate promotes this instability. This
instability mainly occurs when a > 0, i.e., when the feed-
back between APD and [Ca®*]; is negative.

(3) 7> —4A >0, saddle-node bifurcation.—In this
case, when the larger of the two eigenvalues 1=
(t+ V1> —4A)/2 > 1, or 2 —1 < V7> —4A, instability
occurs via a saddle-node bifurcation, leading to the
condition

(s; +cra)g > 1. (16)

Note that Eq. (16) is independent of 5. and f,. As shown in
Fig. 3, this stability boundary is below the boundary of
Hopf bifurcation, and one only observes the Hopf bifurca-
tion induced oscillatory behavior. But bistability can be
observed when the stability boundary is above the boun-
dary of Hopf bifurcation (open arrow in Fig. 3) when a is
more negative and the [Na't]. change is relatively fast

]
(B > 0.2). This is unlikely in ventricular myocytes since
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FIG. 4. (a) Unstable regions in a-T space, obtained from the
iterated map model using the Hill function Eq. (17). (b) Bifurca-
tion diagrams showing a,, versus a using the iterated map model
for T=2.5s. (c) An example of oscillatory behavior from
unstable region I with @ = —0.015. (d) An example of chaotic
behavior from unstable region II with @ = 0.1. Note: We alter
kncx to alter the behavior of the AP model (see Fig. 5), which
changes not only the « value but also the value of k, [e.g.,
compare Fig. 2(b) to Fig. 5(b)]. To match the bifurcation
behaviors, we set k; as a function of a, i.e., k; = 11.5 + 28a.

[Na™]; accumulates or decays very slowly and thus f; is
small, on the order of 0.01.

For more detailed theoretical analyses and computer
simulations using the map model, we use a Hill function for
g in Eq. (9) as

Amax — Amin
= g : —|— —_— . 17
ay g(zn) Amin 1+ (Z_Z)h ( )

Based on Fig. 2(b), we chose @, = 1 8, dpn = 0.6 s, and
h = 500. k, is the dissociation constant of the Hill function.

With the analytical function Eq. (17), one can easily
obtain the steady state of the map model. Using Egs. (3),
(6), and (17), one obtains for the steady state (c,) of ¢, as

02 a — A
Cs = T+21 Amin % +C0. (18)
d

If s, is clamped at a certain constant, the solution of
Eq. (18) can be bistable when a < 0, agreeing with the
results of the AP model [Fig. 1(c)]. Figure 4 shows results
of the map model using the ¢ function in Eq. (17).
Figure 4(a) shows the unstable regions in the a-T space,
showing an unstable region when a < O (unstable I) and
another when a > 0 (unstable II). Figure 4(b) shows a
bifurcation diagram across the two unstable regions for
T = 2.5 s. In unstable region I, only periodic oscillatory
behavior is observed [Fig. 4(c)]. In unstable region II,
period-doubling routes to chaos occur, leading to high
periodicity and chaos [Fig. 4(d)]. Compared to unstable
region I, even though APD varies in roughly the same
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FIG. 5. (a) Bifurcation diagrams showing «,,, c¢,,, and s, versus

kncx in the AP model for T = 2.5 s. (b) a,, versus z,, for kycx =
1 nA/pF using the transform z, = s, 4+ 0.025¢,,.

range, the [Ca?'], variation is attenuated and [Na®];
exhibits a very small variation.

One can change the feedback from positive to negative
and thus the dynamical behaviors in the AP model by
altering kycx. Figure 5(a) shows the AP dynamics vesus
kncx for T = 2.5 s, which shows the same bifurcations as
in Fig. 4(b). When kycx is in the range from 0.75 to
1.5 nA/pF, period-doubling routes to chaos occur, inter-
mingled with periodic windows, corresponding to unstable
region II in Fig. 4. If we plot a, against z, using the
transform Eq. (8), @ > 0 is needed [Fig. 5(b)], indicating
that the feedback between APD and [Ca’']; is indeed
negative. After a stable region for kycx between 1.5 to
2.1 nA/pF, another unstable region (from 2.1 to
5.6 nA/pF) occurs. Periodic oscillations occur in this
whole region, corresponding to unstable region I in
Fig. 4. In this region, the feedback between APD
and [Ca’!], is always positive [a < 0, as in Fig. 2(b)].
Also agreeing with the map results shown in Fig. 4, the
APD variations are in the same range in the two regions, but
the [Ca®*]; and [Na*]; varations are different. In unstable
region II, the [Ca®*], variation is attenuated, and [Na*];
exhibits almost no variation.

In conclusion, the iterated map model incorporating the
multiple timescales and the feedback between APD and
[Ca’*], and [Na'], can well describe the bifurcations
and complex dynamics in paced ventricular myocytes.
Specifically, under diseased conditions in which EADs
are present and the feedback between APD and [Ca®']; is
positive, Hopf bifurcations occur, leading to periodic
oscillatory behaviors. When this feedback is negative,
period-doubling bifurcation routes to alternans and chaos

occur. The bifurcations from the map model may provide
mechanistic insight into slow time course or delay (or
memory) induced period doubling [23] and oscillations
[8,24] shown in experiments. Differing from many previous
theoretical studies [24-28] on the effects of memory, our
iterated map model incorporates the specific feedback
loops and timescales of [Ca?*]; and [Na*]; accumulation,
which reveals the bifurcations leading to the complex AP
dynamics in ventricular myocytes caused by feedback
between APD and [Ca’"]; and [Na't],. These cellular AP

]
dynamics may play important roles in cardiac arrhythmo-

genesis in cardiac tissue [29].
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