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Elastic Interfaces on Disordered Substrates: From Mean-Field Depinning to Yielding
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We consider a model of an elastic manifold driven on a disordered energy landscape, with generalized
long range elasticity. Varying the form of the elastic kernel by progressively allowing for the existence of
zero modes, the model interpolates smoothly between mean-field depinning and finite dimensional
yielding. We find that the critical exponents of the model change smoothly in this process. Also, we show
that in all cases the Herschel-Buckley exponent of the flow curve depends on the analytical form of the
microscopic pinning potential. Within the present elastoplastic description, all this suggests that yielding in

finite dimensions is a mean-field transition.

DOI: 10.1103/PhysRevLett.123.218002

Statistical physics is built on analogies. The comparison
of typically complex problems with a small number of
simpler ones for which an exact solution is known is the
first step in many argumentative constructions. For in-
stance, out-of-equilibrium phase transitions have been
discussed in the mirror of equilibrium phenomena. The
problem of depinning of an elastic manifold moving on a
disordered landscape has been rationalized by analogy with
the theory of critical phase transitions [1,2] and studied for
more than thirty years already. Once this problem has been
reasonably understood, it served in turn as the base model for
a new analogy step. Depinning has shaped the theoretical
endeavors in the understanding of the yielding transition of
amorphous solids under deformation that received the full
attention of the statistical physics community only recently.
The problem with analogies is that, sometimes, they may
prevent us from seeing the big picture.

Members of the family of sand-pile problems, both
depinning and yielding are paradigmatic examples of driven
transitions and are intuitively very alike. Depinning is related
to the movement of an elastic manifold in the presence of a
quenched disordered potential, under an external driving
force. Yielding pertains to the flow of an amorphous solid
upon the application of an external driving stress or defor-
mation. In both cases, if the driving force is weak (and the
possibility of thermal activation is excluded), the system
remains in a frozen configuration; however, if a critical
threshold is exceeded, the system reaches a dynamical state
with a nonzero average velocity (depinning picture) or strain
rate (yielding picture). The critical threshold defines the
transition. In depinning the velocity-force characteristics of
the system shows singular behavior at a critical force f.
While v = 0 for f < f,, the velocity behaves as v ~ (f —
f.)? when f increases above f., with § a well-defined
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number known as the flow exponent. In yielding the
transition is characterized by the critical behavior of the
strain rate y, which is zero when the stress o is below a critical
value ., and becomes y ~ (6 — 6,)” when ¢ > 6,. The
value of fis referred to again as the flow exponent. Its inverse
n = 1/f is known as the Herschel-Buckley exponent.

The depinning transition finds a continuous model
approach in the quenched Edwards-Wilkinson equation,
which allows for analytical treatment using functional
renormalization group (FRG) analysis. For yielding, elasto-
plastic models (EPMs) built at a coarse-grained scale [3]
provide a similar description [4-6]. Nevertheless, despite
the analogous construction, a FRG treatment of EPMs has
found limitations; analytical support for a theory of yield-
ing is only provided so far by mean-field variants [7—14]. In
EPMs the instantaneous values of stress and plastic strain
are evolved consistently. Under a condition of uniform
load, the stress increases uniformly. When the stress locally
exceeds a threshold, the local plastic strain increases at that
patch, causing a reduction of the local stress and a
perturbation of the stress in every other point in the system,
following the action of elastic interactions. The form of
these interactions is the one prescribed by the Eshelby
propagator [15,16] of continuum mechanics which in d
dimensions has a 1/r7 spatial decay and thus it is a long-
range interaction. Also, it has alternating signs depending
of the direction, with a quadrupolar symmetry. This
anisotropy is a curse for the FRG approach and is
responsible for special avalanche correlations in the form
of slip lines, that greatly determine the differences between
yielding and depinning.

In this Letter we show that mean-field depinning and
yielding transition in finite dimensions can be considered to
be special cases of a generalized mean-field problem and,
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therefore, described within the same framework. Simply
considering an elastic kernel as the sum of two contribu-
tions GMP and GY, corresponding, respectively, to a
constant value propagator (in Fourier space) and the
Eshelby propagator, we are able to smoothly interpolate
[eGMIP + (1 — £)GY with 0 > & > 1] between mean-field
depinning and yielding. In particular, we observe a smooth
transition in the values of the critical exponents between the
two limiting cases. Thus, our work suggests an alternative
view for the theoretical tackling of the yielding transition in
any dimension, interpreting it as a particular case of a
general mean-field problem that includes itself the fully
connected mean-field (MF) depinning.

A general model for MF depinning and yielding.—The
model that allows us to describe MF depinning and yielding
on the same footing is constructed in the following way.
A scalar field e; is defined on the sites i of a d dimensional
ordered lattice. For depinning e; represents the interface
position at site i, whereas for yielding e; is the strain of an
elemental volume of the system at site i. The dynamics is
described by overdamped equations of motion:

de;
ﬂj;zfi(ei)+ZGi,i€j+0- (1)
J
In the case of depinning, the terms f;(e;) = —dV;/de;
represent the force exerted by the external pinning potential
V; on the interface, whereas for yielding they describe the
local stress thresholding behavior of a small piece of the
amorphous material. In both cases, the form of V, is similar:
they have minima at different e; positions representing
local equilibrium states. G;; represents the elastic inter-
action between e values at different points. We restrict to
cases in which this interaction preserves the homogeneity
of the system, then G;; depends only on the difference
between the (vector) positions i and j. Also, G;; = Gj; is
assumed. Elastic forces should be balanced in the system;
therefore ), G;; = 0 must be also satisfied. This still
leaves us a lot of freedom in the choice of a general form
for G;;. Nevertheless, an important additional constraint
must be fulfilled: in the absence of local forces (f; = 0) the
flat configuration of the interface e; = cst must be stable.

This condition becomes more transparent in Fourier space,
where Eq. (1) reads (for q # 0)

deq

120 = F(e)ly + Gaeq @

The stability condition is then G4 < 0.

In the following we will mainly discuss the interaction
kernel in Fourier space. One can consider “generalized
mean-field models” defined as cases in which the G is
zeroth order homogeneous in |g|. These kernels produce a

function G;; that is either independent of distance or

decaying with r;; as ri‘j" . In both cases, the effect of a

single site onto another site is negligible compared to the
combined effect of all other sites in the lattice. Therefore,
the dynamics of a given site can be solved by considering
the existence of a (fluctuating) prescribed external field (see
Ref. [13]). In particular, the forms of G4 for mean-field
depinning and yielding satisfy the prescription just men-
tioned. For mean-field depinning GY'™™ = —1 for q # 0,
whereas for yielding G is the Eshelby propagator that in
two dimensions can be written as (q # 0)

2 2\2
Gy =G0 3)
(g3 + q3)

In both cases G4 is taken as zero in a stress conserved
dynamics, as it follows from the condition ) _; G;; = 0. The
evolution of the uniform mode in Eq. (1) is thus directly
obtained by spatial averaging as (we set y =1 in the
following)

5

v E:fi(ei)“‘m (4)
which defines the global strain rate y. The fact that both
GMFD and GY share the property of being O(¢°) allows us
to believe that mean-field depinning and yielding may
experience many common features.

Concerning the properties of the disorder term f;(e;), we
restrict to the case of locally correlated potentials, where the
ensemble average (V;(z)V;(z+ A)) decays to zero suffi-
ciently fast with A. Also, we consider the disorder site by
site to be totally uncorrelated, namely, (V;(z)V;(z)) =0
for i # j. With these correlation properties, renormalization
group theory teaches that the detailed form of V;(z) should
be irrelevant when determining the critical properties of the
transition, as long as the elastic interaction G;; decays
sufficiently fast in space as a function of r = |r; —r;l,
concretely, if G;; ~ r~* with @ > d. In cases in whicha < d
(there included mean-field depinning and yielding) this
result does not apply, and different values are obtained for
the dynamical exponents when considering ‘“cuspy” or
“smooth” potentials [1,13,17,18]. We will mainly focus on
the case of a cuspy form for the pinning potential, taking V;
as composed by a concatenation of parabolic pieces. A
brief consideration of the smooth potential case is included
by the end.

Results.—We present simulations in two dimensions
using a kernel

Gy = (1-¢€)GY + eGMP (5)

that interpolates between the mean-field depinning case
(for € = 1) and the yielding case (for e = 0). Notice that
this interpolation corresponds to a variation of the angular
dependence of the kernel (that for any ¢ is independent of
|q|) that is essentially different from tuning the algebraic
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FIG. 1. Flow curves for different ¢ interpolating between mean-
field depinning (¢ = 1) and yielding (¢ = 0) in the linear (a) and
logarithmic scale (b). The inset shows the values of f determined
as the slope of the straight lines, for ¢ — o.. In (b) curves are
displaced vertically to facilitate visualization. System size
is N = 5122,

decay of the elastic interactions as in Ref. [19]. The same
linear combination of kernels was used in Ref. [20] to
analyze the depletion of soft modes suffered by a “modi-
fied” Eshelby, but the critical properties of the combined
model were not addressed. The stress-controlled and
quasistatic strain-controlled protocols to determine the
flow curves and the avalanche statistics are described in
the Supplemental Material [21].

Both for an elastic interface undergoing depinning and
for an amorphous solid at the onset of yielding, a singular
behavior of y (strain-rate or velocity) is expected at o..
Figure 1 shows the flow curves for different values of . By
plotting the data in logarithmic scale close to (¢ — o) [22],
a clear power-law behavior allows us to determine the flow
exponent . Going from ¢ =1 (MFD) to ¢ =0 (Y) we
observe that the exponent moves from =1 to f~1.5.
Notably, this variation is smooth, as the inset in Fig. 1(b)
shows, indicating the continuous evolution that exists
between mean-field depinning and yielding.

We now discuss the avalanche size distribution P(S)
associated to the transition. When P(S) is taken from large
collections of avalanches obtained in a quasistatic simu-
lation, it is expected to be power-law distributed, namely,
P(S) ~ ST f(S/Smax) With the cutoff function f(x) behav-
ingas f,_,o— land f,_ — 0, and S,,,x depending on the
system size L and the stress nonconserving parameter
used to define the value of G4_, (see Supplemental
Material [21]). Avalanche-size distributions are shown in
Fig. 2 for different ¢ [23]. In depinning mean-field models
7 =3/2, and, in fact, we obtain 7 ~ 1.5 when & = 1. But as
we decrease € moving towards yielding, r diminishes,
becoming 7~ 1.33 at ¢ =0, in agreement with previous
numerical simulations [3,5,18,24,25] [26]. Surprisingly,
this change is continuous: the avalanche size distribution
critical exponent 7 is a smooth function of the parameter .

Directly related to the avalanche mean size is the loading
stress needed to trigger avalanches x;,. It is known
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FIG. 2. Avalanche distributions P(S) interpolating between
mean-field depinning (¢ = 1) and yielding (¢ = 0). Note the
particular scaling of the vertical axis to emphasize differences
(curves vertically displaced for clarity). System size is N = 5122,

for yielding [5,27,28] that its mean value scales sub-
extensively with system volume N = L% (x,) « N7%,
with 0 < @ < 1. This phenomenological subextensiveness
in the plastic flow of amorphous solids under deformation
was interpreted [5,29] as a consequence of a peculiar shape
for the steady state distribution P(x) of local distances to
threshold x [30]. If this quantity has the form P(x) ~ x? as
x — 0, one can deduce [28] that (x,;,) o« N~'/(1+9) Then,
60 =0 is expected for depinninglike models (where the
kernel G;; is non-negative) and ¢ > 0 for yielding models
(where the kernel G; alternates in sign). Figure 3 shows
results for (x.,;,) vs L for systems with different . Power-
law fits allow for a precise determination of the exponent
values. Consistently with the expectation, 6 = 0 for MF
depinning (¢ = 1) and a strictly positive value for the
yielding case (¢ = 0). What is surprising again is that 6
turns out to be a continuous function of the crossover
parameter &, going from 0 to ~0.5 as we move from the
MF-depinning limit to the 2D-yielding case, as displayed in
Fig. 3 inset. This tells us that we are dealing with a family
of similar problems, each of them characterized by a given
degree of subextensiveness of the load needed to trigger
new avalanches.

<X}

10°

FIG. 3. Evolution of (x,;,) as a function of linear system size L,
for different values of e. Values of 0 obtained by fitting straight
lines of slope —d/(1 + 0) are plotted in the inset.

218002-3



PHYSICAL REVIEW LETTERS 123, 218002 (2019)

006 - ' ! ! AV :200 N N

\% 10f B 5
o1 LfL7s .

0.04F =05 / J107F .

—~—02 E1.50 p
0.0 05 107
e #

0.02} 107 1
10°F 1
E (b)
0.00 L= NGRS Xttt .
02 04 06 g 08 10° 107 10" 6-0610°
C

FIG. 4. Same as Fig. 1 but using a smooth pinning potential.
The values obtained for f at corresponding values of ¢ are found
to be 1/2 larger than those for cuspy potentials.

Smooth pinning potentials.—All results presented so far
were obtained using a local disorder potential that has cusps
in the transition from one potential well to the next one.
Usually, according to renormalization arguments, this kind
of detail on the microscopic potential should not influence
the critical properties of a system. In particular, the critical
exponents of the depinning transition are expected to be
independent of the potential being of the cuspy or smooth
type. Nevertheless, the fully connected mean-field case is
an exception (see discussion in Ref. [17]). There, we know
that depinning displays a value f# = 1 for cuspy pinning
potentials and a value # = 3 /2 for smooth pinning potentials.

The smooth crossover of exponents that we observe
between mean-field depinning and yielding in Fig. 1
suggests that we will also find the above described
dichotomy in the flow curve exponent value for the yielding
case. Even more, we can expect to find larger values of f
using smooth potentials for any value of the crossover
parameter €. Results of simulations contained in Fig. 4
confirm this expectation. Note that the § value for smooth
potentials always (i.e., for each ¢) exceeds in 1/2 the one
for cuspy potentials, in full agreement with recent theo-
retical expectations derived from the Prandtl-Tomlinson
model under stochastic driving [14].

Three and larger dimensional cases.—In d =3, the
Eshelby kernel for one scalar component of the deviatoric
strain in Fourier space can be written as

2 2 2 2
G3D _ qx(qy + qZ) 1 (6)

(P4

One can notice that again Gg ~ q’, and this is true in
general for d > 1. Therefore, we expect all our numerical
observations and conclusions obtained in d = 2 to be valid
also in d = 3 and higher dimensions. For instance, pre-
liminary simulations using the previous form of the
Eshelby kernel in d = 3 with the cuspy potential display
again a smooth crossover between Y ~ 1.3 (not far from
other estimations [5]) and fMFP = 1 continuously moving
with . The value of the pseudogap exponent € also changes

continuously with €. The reduction of f in passing from two
to three dimensions can be rationalized as a consequence of
the reduced density of zero modes in the elastic propagator
in d = 3 as compared to the d = 2 case.

Why a smooth exponent crossover is surprising>— The
fact that critical exponents (3, 6, and 7 in particular) vary
smoothly when interpolating between MFD and Y is
remarkable. This situation is not expected in general when
studying crossovers between different asymptotic behav-
iors. Consider, for instance, the case of long-range depin-
ning. Choosing a kernel decaying in space as G; ~ 1/r®
(d < a; < d+ 2)asetof critical exponents is obtained. For
other decaying forms of the kernel G, ~ 1/r* the expo-
nents are different. However, if we combine the two kernels
in the form G = (1 — €)G, + €G, the system will display
the critical behavior corresponding to the lowest value of a.
In other words, if two different criticalities are mixed
together the system will display at long enough scales the
critical exponents corresponding to the longest range
interactions. In order to have a variation of the critical
exponents with g, the long range weight of G| and G, must
be similar. This noncommon case is what happens in our
kernel combination, clearly manifested in the q space form
of the propagator: both the mean-field depinning constant
kernel and the Eshelby kernel of yielding scale as q°. The
interactions in real space at distances of the order of the
system size are O(1/L¢) in both cases.

Conclusions.—We have studied a mesoscopic imple-
mentation of a scalar model for a generalized elastic
manifold on a disordered landscape that is able to describe
both depinning in mean-field and finite dimensional yield-
ing by changing the form of the elastic kernel interaction.
The most important result is the observation of a smooth
transition between MFD and Y, as the kernel interpolates
linearly between the two limiting cases. The identification
of a common scenario for both transitions is assisted by
recent reports of phenomenological properties akin to
mean-field depinning in numerical simulations of yielding
[13,18,31]. In particular, dynamical critical exponents are
seen to depend on the details of the local disorder potential,
a well-known fact for mean-field depinning [1,17].

In recent years, different attempts have been made to
address the yielding transition of amorphous solids from an
analytical perspective. Nevertheless, the noncompliance
with the hypothesis needed for the FRG analysis has
largely confined these treatments to mean-field Hébraud-
Lequeux-like approaches [7-10] and heavy-tail noise
variants [11-14]. Those studies provided a common gen-
eral picture but did not forge a consensus about critical
exponents and scaling laws. One of the main conclusions of
the present work is that the yielding transition, as described
by a scalar model with an Eshelby interaction, can be
treated as a special case of a generalized mean-field
problem which has the very well-known fully connected
MF-depinning problem as one limiting case.
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Our work suggests therefore that, instead of focusing on
nontrivial correlations depending on the propagator proper-
ties and the dimension, a strategic angle of attack for
theoretical studies of the yielding transition could be to
start from a fully connected depinning system and
explore perturbations of the Eshelby type to the constant
propagator.
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