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We present a quantitative assessment of the Toner and Tu theory describing the universal scaling of
fluctuations in polar phases of dry active matter. Using large-scale simulations of the Vicsek model in two
and three dimensions, we find the overall phenomenology and generic algebraic scaling predicted by Toner
and Tu, but our data on density correlations reveal some qualitative discrepancies. The values of the
associated scaling exponents we estimate differ significantly from those conjectured in 1995. In particular,
we identify a large crossover scale beyond which flocks are only weakly anisotropic. We discuss the
meaning and consequences of these results.
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Two seminal papers, both published in this journal in
1995, can be argued to mark the birth of active matter
physics. In Ref. [1], Vicsek and collaborators introduced
their simple model for collective motion, whereXY spins fly
at a constant speed along theirmagnetic direction. InRef. [2],
Toner and Tu (TT) wrote down fluctuating hydrodynamic
equations for this flyingXY model and performed a dynamic
renormalization group calculation of its ordered phase,
concluding, among other things, that such polar flocks
possess true long-range orientational order even in two space
dimensions (2D). In other words, flying spins defy the
famousMermin-Wagner theorem [3]. Since then, our knowl-
edge of active matter has expanded tremendously (see, e.g.,
the various review papers [4–15]). But the TT papers remain
influential even though they deal with the limit case of dilute,
aligning, dry active matter, which usually consists of self-
propelled particles subjected to local alignment in the
absence of any surrounding fluid [15]. In particular, the
TT theory (and related works by Ramaswamy et al.)
predicted what has become one of the most popular features
in active matter studies, the presence, in orientationally
ordered phases, of “giant number fluctuations” (GNFs)
where the variance of the number of particles in subsystems
of increasing size scales faster than the mean [16–24].
Over the years, numerous numerical and experimental

works have tried to verify the TT results, but the evidence
presented has been restricted to a limited range of scales
[25] and/or isotropic measures averaged over all spatial
directions that cannot resolve individual scaling exponents
[19,23,26], resulting in exponent values that could only be

deemed compatible with the TT predictions. This situation
was satisfactory as long as the TT theory was believed, as
claimed in the early papers [2,27], to be “exact at all orders”
in 2D, the dimension of choice of most works. However,
Toner himself realized in 2012 [28] that this is not actually
true and that a number of important terms have been
overlooked, invalidating most claims of exactness. The
remarkable result of true long-range order in 2D remains
valid, as well as the overall structure of the theory. But,
from then on, some features, and, in particular, the scaling
exponent values, became predictions based on the hypoth-
esis that the terms mentioned above are irrelevant. In spite
of this situation, not much further numerical effort was
devoted to gauge the accuracy of the TT predictions (see,
however, Refs. [29,30]), and a full-fledged, quantitative
evaluation of the TT theory is still missing.
In this Letter, we present large-scale numerical simu-

lations of the Vicsek model designed to study the 2D and
3D anisotropic space-time correlations functions at the
heart of the TT theory. Our results largely confirm its
qualitative validity, but our estimates of exponent values
clearly differ from the conjectured ones. In particular, we
find that anisotropy is weak, possibly vanishing. Moreover,
the behavior of density correlations shows qualitative
discrepancies with the theory. We discuss their origin as
well as the theoretical consequences of the hyperscaling
relations that we find numerically satisfied.
We start with a synthetic account of the TT theory. The

hydrodynamic equations written by Toner and Tu govern a
conserved density ρ and a velocity field v:
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∂tρþ∇ · ðρvÞ ¼ 0; ð1aÞ

∂tvþ λ1ðv ·∇Þvþλ2ð∇ ·vÞvþλ3∇jvj2 ¼ ½α−βjvj2�v
−∇PþD0∇2vþD1∇ð∇ ·vÞþD2ðv ·∇Þ2vþ f: ð1bÞ

Here all coefficients can, in principle, depend on ρ and
jvj, the pressureP is expressed as a series in the density, and
f is an additive noise with zero mean and variance Σ delta-
correlated in space and time. To obtain the quantities of
interest hereafter, i.e., correlation functions of density and
transverse velocity fluctuations, Eq. (1) are linearized
around the homogeneous ordered solution: ρ ¼ ρ0 þ δρ
and v ¼ ðv0 þ δvkÞêk þ δv⊥, with ρ0 the global density

and v0 ¼
ffiffiffiffiffiffiffiffi

α=β
p

. (Hereafter, subscripts k and ⊥ refer,
respectively, to directions longitudinal and transverse to
the global order.) After enslaving the fast field δvk, the
Fourier-transformed slow fluctuations read, in the small
q ¼ jqj limit [28],

hjδρðω;qÞj2i ¼ ρ20Σ
Sðω;qÞ q

2⊥; ð2aÞ

hjδv⊥ðω;qÞj2i ¼
Σðω − v2qkÞ2

Sðω;qÞ þ Σðd − 2Þ
STðω;qÞ

; ð2bÞ

where Sðω;qÞ¼f½ω−cþðθqÞq�2þε2þðqÞgf½ω−c−ðθqÞq�2þ
ε2−ðqÞg, STðω;qÞ ¼ ½ω − cTðθqÞq�2 þ ε2TðqÞ, with θq the
angle between global order and q, q⊥ ¼ jq⊥j. The defi-
nitions of v2, γ, c�;TðθqÞ, and ε�;TðqÞ, which are unim-
portant for the following discussion, can be found in
Ref. [28].
Equation (2a) implies the existence of propagative sound

modes, or density waves, whose dispersion relations follow
ω�ðqÞ ¼ c�ðθqÞq − {ε�ðqÞ. This endows density fluctua-
tions hjδρðω;qÞj2i with two sharp peaks in ω centered in
c�ðθqÞq and of respective widths ε�ðqÞ. The two terms of
the rhs of Eq. (2b) correspond, respectively, to transverse
velocity fluctuations parallel and perpendicular to q⊥. The
first term represents correlations of vL ¼ δv⊥ · q̂⊥, which
behave like the density fluctuations. The second term
denotes the fluctuations of vT ¼ δv⊥ − vLq̂⊥, which exist
only for d > 2, and yields a third peak centered in cTðθqÞq,
of width εTðqÞ.
Since ε�;TðqÞ essentially scale as q2 in the small wave

number limit [28], the equal-time correlation functions are
easily obtained by integrating Eq. (2) over ω. The resulting
expressions, presented in Ref. [28], imply that CvðrÞ ¼
hδv⊥ð0Þ · δv⊥ðrÞi ∼ jrj2−d for jrj → ∞.
However, nonlinearities in Eq. (1) are relevant perturba-

tions for all d ≤ dc ¼ 4 [28]. Equal-time velocity correla-
tion functions in the nonlinear theory then follow
CvðrÞ ∼ jrjκ for jrj → ∞, with κ ¼ 2χ=ξ and 2χ, respec-
tively, in the directions longitudinal and transverse to the

order. The sound modes dampings are renormalized as well
and read

εðqÞ ∼
q→0

fqz⊥ for qξ⊥ ≫ qk; q
z=ξ
k for qk ≫ qξ⊥g; ð3Þ

while the sound speeds c�;TðθqÞ remain those given by the
linear theory.
Exponents χ, ξ, and z are universal. The roughness

exponent χ rules how the variance of velocity and density
fluctuations varies with length scales. Fluctuations vanish
asymptotically when χ < 0, ensuring long-range polar
order. The calculations of Toner and Tu proved that this
is true for d ¼ 2 and 3, while in the linear theory, where
χ ¼ 1 − d=2, fluctuations diverge and order is destroyed in
2D. The anisotropy exponent ξ measures the difference in
scaling along and transversally to global order. The TT
theory predicts that fluctuations scale anisotropically for
d < dc ¼ 4 (ξ < 1), while in mean field ξ ¼ 1. Finally, the
dynamical exponent z measures how the lifetime of sound
modes scales with the system size. At the linear level z ¼ 2,
which corresponds to a diffusive damping, while z < 2 is
expected for d < 4 according to the TT theory. In their first
publications [2,27], Toner and Tu claimed an exact com-
putation of these exponents in d ¼ 2 and found χ ¼ ð3 −
2dÞ=5 and ξ ¼ z=2 ¼ ðdþ 1Þ=5 (see TT95 numbers in
Table I). In his later “reanalysis” of the theory [28], Toner
realized that additional relevant nonlinearities were missed,
so that the above exponent values could be exact, even in
d ¼ 2, only under the conjecture of the asymptotic irrel-
evance of these terms.
We now turn to our numerical assessment of the TT

theory. We use the standard discrete-time Vicsek model for
efficiency. Particles i ¼ 1;…; N with position ri and
orientation êi move at constant speed v0 and align their
velocities with current neighbors j:

êtþ1
i ¼ϑ½hêtjij∼iþηξti�; rtþ1

i ¼ rtiþv0ê
tþ1
i ; ð4Þ

where ϑ½u� ¼ u=juj, hij∼i is the average over all particles j
within unit distance of i (including i), and ξti are uncorre-
lated random vectors uniformly distributed on the unit

TABLE I. Exponent values conjectured by Toner and Tu in
Ref. [2] and those resulting from our numerical evaluation of the
density and velocity correlation functions.

d ¼ 2 d ¼ 3 d ≥ 4

TT95 Numerics TT95 Numerics Mean-field

χ −0.20 −0.31ð2Þ −0.60 ≃ − 0.62 1 − d=2
ξ 0.60 0.95(2) 0.80 ≃1 1
ζ ≡ d − 1
þ2χ þ ξ

1.20 1.33(2) 1.60 1.77(3) 2

z 1.20 1.33(2) 1.60 ≃1.77 2
GNFs 1.60 1.67(2) 1.53 1.59(3) 1þ 2=d
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circle (2D) or sphere (3D) [31]. Square domains of linear
size L containing N ¼ ρ0Ld particles, with N ranging from
a few million to a few billion, were considered. For
numerical efficiency, small speed and weak noise were
avoided. We used v0 ¼ 1 and η ¼ 0.5 (2D) and 0.45 (3D)
with ρ0 ¼ 2, parameter values in the homogeneous ordered
phase but not too deep inside. Fluctuation fields δρ and δv⊥
were obtained by coarse-graining over boxes of unit linear
length. The associated correlation functions were simply
obtained by computing the square norm of the fields’
Fourier transform.
In finite systems with periodic boundary conditions, the

direction of order diffuses slowly (the diffusion constant
∝ 1=N [39]). To estimate quantities scaling anisotropically
like those defined by Eq. (2), one then needs, before
averaging in time, to rotate a copy of the system at each
measure so that the global order remains along a chosen
direction. Moreover, data have then to be averaged over
times longer than the timescale of this rotation. This is
possible but costly and quickly becomes prohibitive for
large systems. Forcing the global order to remain along a
given direction can be achieved either by applying an
external field or by imposing reflecting side boundaries as
in, e.g., Refs. [25,29,30]. This perturbs slightly the global
behavior of the system but allows for much shorter
averaging times at equivalent sizes. All three protocols
were tested, and we found that when used cautiously they
yield identical results over the scales that can be explored
by all (see [33] for details). Below, we present only data
obtained using a channel with reflective walls.
Because the scaling of correlations in real space gen-

erally suffers strong finite-size effects [39], this work
focuses on their analysis in Fourier space. Although we
measured correlations in the whole (qk; q⊥) plane [40],
exponents χ and ξ can be estimated from just the longi-
tudinal (q⊥ ¼ 0) and transverse (qk ¼ 0) directions. For
velocity correlations, we have

hjδv⊥ðqÞj2i ∼
q→0

fq−ζ⊥ for qξ⊥ ≫ qk; q
−ζ=ξ
k for qk ≫ qξ⊥g

ð5Þ

with ζ ≡ d − 1þ 2χ þ ξ. Our data in both 2D and 3D show
that hjδv⊥ðqÞj2i scales cleanly at small values of q⊥ [lower
sets of curves in Figs. 1(a) and 1(b)], with estimated values
of ζ slightly but significantly different than those conjectured
by Toner and Tu (see Table I). Behavior in the longitudinal
direction is more surprising [upper set of curves in Figs. 1(a)
and 1(b)].While fromRef. [27] a divergence for qk → 0with
an exponent −2 is conjectured in both 2D and 3D, we
observe, in 2D, a size-independent crossover from a power
law with exponent ≃ − 1.65 at intermediate values of qk to
one with a larger exponent ≃ − 1.4 at smaller qk. The
crossover scale lc ¼ 2π=qc ≃ 100, indicated by the purple
dashed lines in our figures, is of the same order as typical

sizes considered so far in other works [19,25], which may
explain why it has never been reported. Note further that our
postcrossover estimate −1.4 is not far from the −1.33 value
measured in the transverse direction, implying weak, pos-
sibly vanishing, anisotropy (ξ ≃ 0.95). In 3D, the two
correlation functions show approximately the same exponent
above a scale lc ≃ 30: Scaling is isotropic [Fig. 1(b)].
Overall, our measures lead to values of χ and ξ in clear
departure from those conjectured by Toner and Tu (see
Table I).
The density correlation function is expected to show the

following longitudinal and transverse scalings [41]:

FIG. 1. Equal-time correlations in 2D (left) and 3D (right).
Insets contain the same data as their main panel but rescaled by
ðq=2πÞσ , where σ is an estimated exponent. The purple vertical
lines mark the crossover scale qc=ð2πÞ (see the text). Symbol
code for linear system size: in 2D, squares, triangles, and dots for
L ¼ 2000, 4000, and 8000, respectively; in 3D, squares, trian-
gles, diamonds, and dots for L ¼ 100, 200, 500, and 960,
respectively. (a),(b) Velocity correlations in the transverse (red,
lower data) and longitudinal (blue, upper data) directions. Insets:
σ ¼ 1.33 (2D, ⊥), 1.40 (2D, k), and 1.77 (3D, ⊥ and k). (c),(d)
Density correlations in the transverse (red, lower data) and
longitudinal directions for different values of q�⊥ (upper curves,
shifted upward for clarity). In (c), Roman numerals indicate the
three longitudinal scaling regimes discussed in the text (upper
curves). Insets: σ ¼ 1.33 (2D, ⊥) and 1.73 (3D, ⊥). (e),(f):
Longitudinal data of (c),(d) rescaled by q�⊥−μ with μ ¼ 1 and 1

2
in

2D and 3D, respectively. Points in the regime q⊥ ≫ qk are shown
in thin dashed lines for clarity. Insets: σ ¼ 2.40 (2D) and
2.27 (3D).
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hjδρðqÞj2i ∼
q→0

fq−ζ⊥ for q⊥ ≫ qk;q2⊥q
−2−ζ=ξ
k for qk≫ qξ⊥g:

ð6Þ

In the transverse direction, our data confirm that scaling
takes place with the same exponent as for velocity
correlations [Figs. 1(c) and 1(d), lower set of curves],
albeit with more pronounced finite-size effects, especially
in 2D [compare the insets in Figs. 1(a) and 1(b) and
Figs. 1(c) and 1(d); see [33] for comments]. In 3D, the
apparent exponent is slightly lower in absolute value than
the one given by hjδv⊥ðqÞj2i (−1.73 vs −1.77), but given
the limited range of scaling available we cannot exclude
that these two values are, in fact, the same asymptotically.
The scaling of density fluctuations in the longitudinal

direction is more subtle to analyze, because it depends
explicitly on q⊥ [see Eq. (6)]. The behavior of hjδρðqÞj2i
with qk for three fixed values of q�⊥ is shown in Figs. 1(c)
and 1(d) (upper sets of curves). One can identify three
regimes below the crossover scale qc ¼ 2π=lc [noted I, II,
and III in Fig. 1(c)], which are most easily distinguished in
2D but probably also present in 3D. For the smallest
values of qk, the functions reach a plateau, whose range
of existence and amplitude, respectively, increases and
decreases with q�⊥ (regime I). This behavior corresponds to
the “transverse” regime where qk ≪ q⊥. Increasing qk
beyond this plateau, hjδρðqÞj2i shows a second scaling
behavior with a q�⊥-dependent amplitude (regime II), in
qualitative agreement with Eq. (6). Finally, in 2D, where
sufficiently large systems can be studied, a third scaling
region (regime III) is observed, with a slow (exponent
∼ − 0.7), q�⊥-independent decay whose range increases
when q�⊥ → 0. Such a regime is absent from the framework
of the TT theory.
The second regime also departs strikingly from the

Toner-Tu results. In this region, both 2D and 3D curves
do not collapse when their amplitude is rescaled by q�−μ⊥
with μ ¼ 2, as predicted exactly by the TT theory, but
rather with μ ≃ 1 in 2D and 0.5 in 3D [Figs. 1(e) and 1(f)].
Moreover, the collapsed curves do not decay with exponent
−2 − ζ=ξ ≃ −3.4 (2D) and ≃ − 3.77 (3D) as predicted by
Eq. (6) using the values of χ and ξ determined from
hjδv⊥ðqÞj2i. Rather, we find −2.4 in 2D and −2.27 in 3D.
Our data therefore suggest that, for qk ≫ qξ⊥, hjδρðqÞj2i ∼
qμ⊥q

−μ−ζ=ξ
k with μ ≃ 1 in 2D and 0.5 in 3D.

In order to assess the dynamical exponent z, we now turn
to the study of space-time correlations. As expected from
Eq. (2) and previous work in 2D [25,30], both hjδρðω;qÞj2i
and hjδv⊥ðω;qÞj2i, as functions of ω, show two asym-
metric peaks that become symmetric in the transverse
direction (θq ¼ π=2). In 3D, one observes the emergence
of an additional third peak in hjδv⊥ðω;qÞj2i coming from
its component vT . All these peaks are well fitted close to

their maximum by Cauchy distributions of the type
H�;TðqÞ=f1þ½ω−ω�

�;TðqÞ�2=Δω2
�;TðqÞg, whereH�;TðqÞ,

ω�
�;TðqÞ, and Δω�;TðqÞ, respectively, account for their

heights, positions, and half-peak widths (see data in
Ref. [33]). Since we have seen that density correlations
seem more sensitive to finite-size effects, we now focus on
velocity correlations for the quantitative characterization of
the peaks. As expected, peak positions ω�

�;TðqÞ scale
linearly with q in the limit q → 0, and the sound speeds
c�;TðθqÞ are given by the corresponding slopes. Perfect
agreement is found with the linear theory, in both 2D and
3D [39]. Peak widths, on the other hand, show nontrivial
scaling:Δω�;TðqÞ correspond to the dampings ε�;TðqÞ and,
thus, from Eq. (3) are expected to scale as qz=ξk and qz⊥ in the
longitudinal and transverse directions. We find rather good
scaling in 2D for both longitudinal and transverse direc-
tions [Fig. 2(a)], with, in this last case, z ≃ 1.33. In the
longitudinal direction, we find weak evidence of a cross-
over at the same scale lc as for equal-time correlations.
Below lc, the estimated value of z=ξ (1.65) is identical to
that of ζ=ξ found below lc in Fig. 1(a). Beyond lc, we
unfortunately could not obtain much data, but the few
points we have are compatible with a slope 1.4, i.e., the
asymptotic value of ζ=ξ found from Fig. 1(a). In 3D, where
the data are much more limited, we can nevertheless
observe good scaling of the peak width ΔωTðqÞ over
almost a decade in the transverse direction θq ¼ π=2,
yielding the estimate z ≃ 1.77 [see Fig. 2(b)], identical
to our estimate of ζ from equal-time correlations. Results
leading to similar values of z in 2D and 3D are found from
the scaling of the peaks heights; see [33] for details.
In summary, using the Vicsek model, we have tested the

structure and the quantitative predictions of the TT theory.
While we find overall qualitative agreement with these
remarkable results, our estimates of the three universal
exponents χ, ξ, and z, which we have measured independ-
ently, are incompatible with those conjectured by Toner and
Tu in Ref. [2] (see Table I). These differences indicate that

FIG. 2. (a) 2D peak widths as functions of q in the transverse
(red, upper curves) and longitudinal (blue, lower curves) direc-
tions; insets: the same data rescaled by ðq=2πÞσ with, respec-
tively, σ ¼ 1.33 and 1.40. (Diamonds, squares, and triangles,
respectively, correspond to system sizes L ¼ 1000, 2000, and
4000.) (b) The same as (a) but in 3D and only in the transverse
direction for the peak related to vT (see [33]) at sizes L ¼ 100
(squares) and 200 (dots).
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at least some of the nonlinearities identified in Ref. [28] and
neglected in the original calculation are indeed relevant
asymptotically.
Our data suggest, in particular, the existence of a

crossover scale beyond which—i.e., at scales scarcely
explored before—there is very little or vanishing
anisotropy. Coming back to the popular giant number
fluctuations, we find that ζ=d, which governs their scaling,
varies very little across scales and takes values close to
those predicted by Toner and Tu (see Table I and Ref. [33]).
This clarifies why previous studies focusing on this
quantity could not challenge the Toner and Tu conjecture
[19,25,26].
We find identical estimates, within our numerical accu-

racy, of ζ and z. In other words, the hyperscaling relation
z ¼ d − 1þ 2χ þ ξ seems satisfied. If we take this numeri-
cal fact for granted, it implies that, somewhat counter-
intuitively, the vertices responsible for the departure from
the 1995 TT results are not those coupling density and
order. Moreover, ζ ¼ z also implies that the noise variance
Σ does not renormalize, so that the dominant effective noise
in the v equation is indeed additive, as assumed in the TT
theory (see [33] for the simple arguments leading to these
conclusions).
We also find qualitative discrepancies with the TT theory

in the longitudinal behavior of density correlations [42]. We
have at present no full understanding of this, but, as
explained in a forthcoming publication, the consideration
of a (conserved) additive noise in the density equation—
something quite natural in the context of fluctuating
hydrodynamic equations—leads to a modified form of
Eq. (6) in the q⊥ → 0 sector, while velocity fluctuations
[Eq. (5)] remain unchanged. This change already occurs at
the linear level and could account, upon renormalization,
for the peculiar scaling regimes reported in Figs. 1(c)–1(f).
In spite of the above remarks, we believe our results bring

further evidence that the TT theory is the correct framework
to describe the universal properties of dry polar flocks.
Nevertheless, we are still missing a final answer, and our
findings call even more than before for a complete, possibly
nonperturbative, renormalization group approach [43].
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