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Higher-order topological insulators are newly proposed topological phases of matter, whose bulk
topology manifests as localized modes at two- or higher-dimensional lower boundaries. In this Letter, we
propose the twisted bilayer graphenes with large angles as higher-order topological insulators, hosting
topological corner charges. At large commensurate angles, the intervalley scattering opens up the bulk gap
and the corner states occur at half filling. Based on both first-principles calculations and analytic analysis,
we show the striking results that the emergence of the corner states do not depend on the choice of the
specific angles as long as the underlying symmetries are intact. Our results show that the twisted bilayer
graphene can serve as a robust candidate material of a two-dimensional higher-order topological insulator.
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Introduction.—Generalizing the concept of topology in
diverse systems has been one of the most important topics
in condensed matter physics [1,2]. One recently proposed
interesting path of extending the knowledge of the topo-
logical phases of matter is to consider higher-order gen-
eralization [3,4]. That is to say, the band topology of
d-dimensional insulator manifests as nontrivial d − 2 or
lower-dimensional boundary states, which is known as the
higher-order topological insulator (HOTI) [5–36]. There
have been several theoretical proposals of the higher-order
topological insulators in both two- and three-dimensional
solid state systems. For example, in three dimensions, the
higher-order topological insulators harbor one-dimensional
gapless modes, which is referred to as the hinge modes.
Examples include a bismuth crystal [37], SnTe, surface-
modified Bi2TeI, BiSe, BiTe [8], phosphorene [18], van der
Waals multilayers [30], and transition metal dichalcoge-
nides XTe2 [38]. In two dimensions, 0D localized modes
appear at the corners of the two-dimensional materials,
known as the corner states. The proposed examples are
two-dimensional phosphorene [18], monolayer graphdiyne
[39–41], bismuth [42], and continuum model of the twisted
bilayer graphene [43,44].
Although there already exist a few candidate materials

for the two-dimensional HOTIs, experimental signature
that unambiguously identifies such phases remains elusive
to date. To this end, it is desirable to identify higher-order
topological materials that are readily available and highly
controllable. Here, we propose that a large angle twisted
bilayer graphene (TBG) is a generic higher-order topo-
logical insulator, characterized by the topologically pro-
tected corner states. TBG has clear advantages over other
candidates for the experimental detection of the corner
charge. (i) In our proposal, the HOTI is realized at half

filling; thus the corner state occurs without any fine-tuning
of chemical potential, which is distinct from other cases
[43,45]. (ii) In graphene, ultraclean transfer techniques are
available that enables isolation from undesirable substrate
effects [46]. (iii) The HOTI in graphene is a very unique
system realized by intervalley scattering with negligible
spin-orbit coupling. Thus, one can avoid any ambiguity
arising from the spin-orbit coupling effect.
In this Letter, for the first time, we propose that the TBGs

with large commensurate angles can be generically the
higher-order topological insulators. We first present the
first-principles calculations of the TBG at the commensu-
rate angle, θ ¼ 21.78°, as a representative example. In this
case, we find that the sizable gap (∼9 meV) exists which is
originated from the absence of the Uð1Þ valley symmetry,
Uð1Þv. We then show that TBG has nontrivial higher-order
band topology, characterized by the occurrence of topo-
logical corner states with the fractional electron charge e=2
in the mirror symmetric corners and C6 symmetric corners.
In addition, we generalize our discussion by showing that
the nontrivial band topology is guaranteed to exist regard-
less of the specific commensurate twist angle or the
microscopic details of the atomic structure as long as the
underlying symmetries are preserved.
Lattice model and symmetries.—We begin our discus-

sion by introducing the atomic structure and the associated
crystalline symmetries of TBG. We consider a specific set
of twisted bilayer structures that belong to the hexagonal
space group no. 177 (point group D6). The atomic
configuration can be readily constructed by twisting AA-
stacked bilayer graphene with respect to the collinear axis
at the hexagonal center [see Figs. 1(a) and 1(b)]. The twist
preserves both C6z and C2x about the out-of-plane z and
in-plane x axes, respectively, which generate another
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important rotation C2y about the y axis. The original
translation symmetry is broken by the twist, but we
can define the moiré translational symmetry, depending
on the twist angle. For any coprime integers p and q, a twist
by θp;q ¼ arccos½ð3p2 þ 3pqþ q2=2Þ=ð3p2 þ 3pqþ q2Þ�
results in an enlarged moiré unit cell with the lattice
constant L ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3p2 þ 3pqþ q2Þ=½gcdðq; 3Þ�

p
[47,48],

where a is the original lattice constant and gcd represents
the greatest common divisor.
Electronic energy bands.—In the limit where θ ≲ 1°

without the lattice distortions, the moiré potential has long
periodicity in real space, resulting in negligible interaction
between valleys. In this limit, including the so-called magic
angles where the Fermi velocity vanishes [49,50], each
valley is decoupled and the Uð1Þ valley symmetry, Uð1Þv,
is approximately preserved and it, together with C2zT
symmetry, provides topological protection of four Dirac
points associated with the Z2-quantized Berry phases π
[45,51,52]. Here, T represents time-reversal symmetry,
where T 2 ¼ 1 without spin-orbit coupling.
However, in the large angle limit θ → 30°, which is the

concern of this Letter, the Uð1Þv symmetry can be broken
and the fourfold-degenerate Dirac points can split into two
pairs of massive Dirac points, which here we claim to
induce a HOTI phase. The intervalley coupling, and thus
the gap opening between Dirac points, has a tendency to
increase as the twist angle θ increases. Eventually, a sizable
band gap of around 10 meV order opens at θ ¼ 21.78°
(p ¼ 1, q ¼ 3) [53]. Focusing on this particular angle first,
below we demonstrate the HOTI phase in TBG using first-
principles calculations.
Figure 2(a) shows the density functional theory (DFT)

electronic band structures of the TBG with θ ¼ 27.78°. The
results show that the band structure features a narrow gap of
∼9 meV, which is more or less similar to the previous
result of ∼7 meV [53]. While a global direct band gap
appears throughout the entire moiré Brillouin zone (BZ)
between the conduction and valence bands, the minimum
value occurs in the vicinity of K (as well as K0) as shown in
the right panel of Fig. 2(a). Using all the occupied 56 bands,
we explore the higher-order band topology by directly

calculating a mirror-winding number and the second
Stiefel-Whitney number.
Mirror-winding number.—Although we find that the

Zak phase along any closed loop is trivial, a finer
topological classification can be made along the mirror
invariant line utilizing the presence of the mirror symmetry.
The BZ has a mirror-invariant line Γ-M3-Γ preserving C2x
symmetry [see Fig. 2(b)]. Along this mirror invariant line,
we can decompose the Hamiltonian into two distinct
subsectors characterized by the mirror eigenvalues �1.
Then, one can define theZ2 mirror winding number [54–56]
as the mirror-resolved Zak phase, ν�, calculated along
Γ-M3-Γ line forC2x ¼ �1 subsector. TheZ2 mirror winding
number ν can be evaluated by

ν ¼ νþ ¼ ν− ðmod 2Þ; ð1Þ

where

ν� ¼ 1

iπ
log det½U�ðΓ;M3ÞU�ðM3;ΓÞ�: ð2Þ

Here, U�ðk1; k2Þ ≡ P exp½i R k2
k1

A�ðkÞdk� ¼ P̃�ðk1Þ
½Qk P̃�ðkÞ�P̃�ðk2Þ, A� is the non-Abelian Berry connec-
tion evaluated from the � sector, respectively. P indicates
the path ordering, and P̃� is the projection operator to the

(b)

(a)

Carbon in the top layer

Carbon in the bottom layer

FIG. 1. Atomic configurations of the TBG in (a) a single moiré
unit cell and (b) a finite-sized system with the twist angle, θ ¼
21.78° (p ¼ 1, q ¼ 3).
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FIG. 2. (a) DFT band structures of TBG with θ ¼ 21.78°. The
right panel shows the magnified view of the region near K
indicated by a gray box in the left panel. (b) Moiré Brillouin zone
and the parity eigenvalues for half the occupied bands with
negative parity. Time-reversal invariant momenta are indicated by
a solid circle. A dotted red line highlights the high-symmetry
C2x-invariant line at kx ¼ 0. (c) Zak phase calculated using the
mirror þ1 bands along the mirror-invariant kx ¼ 0 line. The red
curve represents the ith eigenphase θi. The blue curve represents
the accumulated phase up to ith states, which results in π when
summed up over all the occupied mirror-þ1 bands. The mirror
winding number is calculated for the 56 occupied bands,
comprising the same number of mirror-þ and mirror-−
bands (Nþ

occ ¼ N−
occ ¼ 28).
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occupied mirror � subspace. Using all the occupied DFT
bands, we calculate the eigenphase θ�;i ≡ Im logðu�;iÞ,
where u�;i is the ith eigenvalue of the Wilson loop matrix
U�ðΓ;M3ÞU�ðM3;ΓÞ. The results, presented in Fig. 2(c),
show that ν ¼ ν� ¼ þ1, confirming the nontrivial band
topology.
Stiefel-Whitney number.—The physical manifestation of

the nontrivial winding number ν ¼ 1 is the emergence of
the topological corner states as we discuss later. Such
corner states can be further established by the second
Stiefel-Whitney number [57]. The TBG preserves the
two-dimensional inversion symmetry C2z, whose product
with time-reversal symmetries C2zT imposes that the
Hamiltonian is real symmetric matrix, thus being charac-
terized by the Stiefel-Whitney classes. While the first
Stiefel-Whitney number ω1, which is equivalent to the
Zak phase, is turned out to be trivial, the nontrivial second
Z2 Stiefel-Whitney number ω2 is expected from our
DFT calculations. As proposed by Ahn et al. [57,58],
we evaluate ω2 from the parity eigenvalues of occupied
bands at time-reversal invariant momenta (TRIM) Γi ∈
fΓ;M1;M2;M3g using

ð−1Þω2 ¼
Y

Γi∈TRIM
ð−1Þ½N−

occðΓiÞ=2�; ð3Þ

where N−
occðΓiÞ is the number of occupied bands with an

odd parity at Γi. Figure 2(c) shows the calculated parity
eigenvalues at TRIM. We find that Γ (M1;2;3) has 24 (30)
odd bands out of the 56 occupied bands. Therefore the
parities at ðΓ;M1;M2;M3Þ ¼ ðþ;−;−;−Þ, leading to
ω2 ¼ 1.
The mirror winding number ν and the second Stiefel-

Whitney number ω2 are, in general, irrelevant topological
invariants that depend on different symmetries (C2x and
C2zT , respectively). However, in the TBG, where both
symmetries are present, we can formally equate these
numbers. We decompose the Wilson loop into the two
pieces of the Wilson lines related by the inversion sym-
metry [see Fig. 4(a)]. In this case, one can show the exact
cancellation between the two Wilson lines up to the parity
eigenvalues of C2z as following,

det½U�ðΓ;M3ÞU�ðM3;ΓÞ�
¼ detfU�ðΓ;M3ÞC2z½C−1

2z U�ðM3;ΓÞC2z�C−1
2z g;

¼
Y

n∈occ;C2x¼�1

ζnðΓÞζnðM3Þ; ð4Þ

where ζnðkÞ is the eigenvalue of C2z at k on nth band. Since
C3z guarantees the same parity structure of the bands atM1,
M2, and thus ζnðM1ÞζnðM2Þ ¼ 1 for any band index n.
Therefore, we finally equate the mirror winding number
ν ¼ ν� to the second Stiefel-Whitney number ω2,

ð−1Þνþ ¼
Y

C2x¼1;n∈occ
ζnðΓÞζnðM3ÞζnðM1ÞζnðM2Þ;

¼
Y

Γi∈TRIM
ð−1ÞN−

occðΓiÞ=2 ≡ ð−1Þω2 : ð5Þ

In the last line we used the absence of Zak phase (the first
Stiefel-Whitney number ω1 ¼ 1) along Γ-M3-Γ, which
enforces the same parity between the mirror-even and
mirror-odd sectors [59].
Topological corner states.—After presenting the non-

trivial topology of the bulk using the first-principles
calculations, we utilize the tight-binding model [71] to
demonstrate the topological corner states in a large sized
TBG. We take the open boundary condition preserving the
mirror symmetry. Figure 3(a) shows the tight-binding
model calculations of the localized charge existing at the
mirror symmetric corners. The mirror symmetry forces the
corner charge to be equally distributed at each corner. As a
result, they are fractionally quantized as e=2. In addition,
one can also consider the boundary termination with C6

symmetry. In such case, we can define Z6 valued C6

quadrupole moment. This value is explicitly given as [72],

Qð6Þ ¼ e
2
w2 þ

e
6
ð#C3Þ ðmod eÞ; ð6Þ

where #C3 counts the difference in the number of the
occupied bands with Ĉ3 eigenvalue 1 between K and Γ. We
find that the second term in Eq. (6) vanishes. Accordingly,
e=2 localized corner charge occurs at each C6 symmetric
corners. Figure 3(b) shows such localized corner states
derived from the tight binding model.
Generalization to an arbitrary twist angle.—It is impor-

tant to note that the Stiefel-Whitney number, as well as
the mirror winding number, is determined by the eigen-
states at TRIM, whereas the low-energy physics of the
TBG is described in the vicinity K and K0 points in the
moiré BZ. Therefore, the interlayer coupling does not alter
the occupations of the TRIM points as compared to the
noninteracting monolayer graphenes. As a consequence,

FIG. 3. The topological corner states derived from the tight
binding model with (a) mirror symmetric and (b) C6 symmetric
open boundary conditions. The size of the red circles indicate the
wave function amplitude. We find (e=2) localized states on the
corners in both boundary conditions.
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the eigenvalues of C2z and the Stiefel-Whitney number
remains robust irrespective on the microscopic details of
the interlayer coupling as long as the associated symmetries
are preserved. Therefore, we can extend our analysis to
arbitrary commensurate angles without the microscopic
band structure calculations, assuming that all the low
energy physics is described near K and K0 points. Using
this special property, we now show that the TBG in all other
commensurate angles (arbitrary p, q) are higher-order
topologically nontrivial at half filling. To do so, we first
need to count the eigenvalues of inversion symmetry for
the noninteracting monolayer graphene at the TRIM points
in the moiré BZ. We first notice that fð3p2 þ 3pqþ q2Þ=
½gcdðq; 3Þ�g≡ 2N þ 1 (N ∈ Z) is always an odd integer
and the area of the monolayer BZ fills 2N þ 1 numbers of
the moiré BZ. For example, Fig. 4(b) shows that the
monolayer BZ fills seven times that of a moiré BZ at
θ ¼ 21.78°. In generic commensurate angles, there exist
2N þ 1 occupied states at each TRIM point, say X, in the
moiré BZ. In the original BZ of a monolayer, these states
correspond to the occupied state of the monolayer graphene
at distinct “non-TRIM” points related by the moiré recip-
rocal vectors [see Fig. 4(b)]:

Xm;n ≡ X þmbM;1 þ nbM;2; ð7Þ

where m, n are some integers. Among all the possible
“independent” 2N þ 1 numbers of momentum points Xm;n,
only X0;0 is the inversion symmetric point in the monolayer
BZ. Other 2N distinct momenta, Xm;n, are mapped to
X−m;−n under inversion symmetry. Explicitly, one can
choose a gauge such that Ĉ2z symmetry operator acts in
the occupied eigenstates space as, Ĉ2zjXm≠0;n≠0i ¼
jX−m;−ni. If we choose the basis of the occupied states
at the TRIM points in the moiré BZ as ðjX0;0i;
jX0;1i; jX−0;−1i;…; jXm;ni; jX−m;−niÞT , Ĉ2z operator in
the moiré BZ is explicitly represented as,

Ĉ2z ¼
�
ζðXÞ 0

0 σx ⊗ IN

�
; ð8Þ

where ζðXÞ is the inversion eigenvalue of the occupied state
at X in the monolayer graphene. Applying the eigenvalues
of Eq. (8) to the second Stiefel-Whitney number in Eq. (3),
the contributions from Xm≠0;n≠0 cancels out and we find
that

ð−1Þω2 ¼ ζðMÞζðΓÞ: ð9Þ

In the monolayer graphene, the inversion eigenvalues at M
point and Γ point always differ by the sign, so the second
Stiefel-Whitney number must be always nontrivial,ω2 ¼ 1.
As a consequence, the TBG at all commensurate angles
must be higher-order topologically nontrivial at half filling,
as long as the gap is present at K point. In principle, the
topological transition to the trivial state is possible if the
additional gap closing occurs at M point. However, such
gap closing contradicts with the previous first-principle
calculations [73].
Effect of disorder.—In realistic graphene flakes, the

disorder can break the underlying crystalline symmetries
of the edge. To test the stability of the corner states against
the disorder, we have simulated the tight-binding model in
the presence of the Anderson disorder and the structural
edge disorder [74] (see the Supplemental Material [59]).
We calculate the dipole moment, μ, along the edge by
computing the local density of states (LDOS). μ quantizes
as 1=2 if the corner is exactly localized at the corner, and
vanishes if the edge is trivial. Figure 4(c) shows the dipole
moment as a function of the Anderson disorder strength,W.
We find that the dipole moment survives up to W ≈ 1 eV,
indicating that the corner states are robust against the finite
disorder even in the absence of the crystalline symmetries.
Beyond 1 eV scale, the bulk gap closes and the dipole
moment becomes trivial. In the presence of the structural
edge disorder, we also find the similar robustness against
the disorder. In this case, the corner states reconstruct the
spatial distribution and remained to be localized at the
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FIG. 4. (a) Schematic figure representing the Wilson loop along
the mirror invariant line. We can decompose the Wilson loop into
two lines related by the inversion symmetry (red and blue lines).
(b) Figure of monolayer BZ and moiré BZ when θ ¼ 21.78°. In
the monolayer BZ, the TRIM points in the moiré BZ are always
replicated odd times (in this case, seven times). (c) Averaged
dipole moment of the corner state as a function of the disorder
strength,W. We find that the dipole moment consistently survives
up to 1 eV strength disorder regardless of the system size.
(d) LDOS with the structural edge disorder. The corner state
reconstruct its distribution and remained to be stable against the
disorder (blue circle). Red cross indicates the removed sites.
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corner [Fig. 4(d)], reflecting the robustness against the
disorder [28,35,39].
Conclusion.—In summary, we have studied the higher-

order topological properties of the TBG. When the twisted
angle is large enough, the intervalley scattering plays an
important role. Based on the first principle DFT calcula-
tion, we have demonstrated the existence of gap at charge
neutrality due to the brokenUð1Þv symmetry. We have also
shown that the TBG naturally hosts topological corner
states that are protected by the mirror winding number. It is
worth to note that the application of the pressure and strain
can enhance the bulk gap. Yankowitz et al. [75] found that
the application of the hydraulic pressure can drastically
increase the bulk gap size. In addition, we have simulated
the enhancement of the bulk gap as a function of the
symmetry preserving strain [59]. The wide tunable band
gap would allow more feasibility in the experimental
realization of the HOTI.
It is worth emphasizing that the emergence of the HOTIs

in TBG at any commensurate angles has generic properties
induced by intervalley scattering and exists in any com-
mensurate twist angles as long as the system opens a gap.
In addition, the corner states occur at the half filling
such that it does not require any fine-tuning of chemical
potential. We also find that the corner states are robust
against the finite disorder even in the absence of the
crystalline symmetries. Our work provides important guid-
ance for the search of the higher-order topological materials
and paves the way for future experiments in the TBGs.
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