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The impact of electron correlation on the Dirac semimetal state is investigated for perovskite CaIrO3 in
terms of the magnetotransport properties under varying pressures. The reduction of electron correlation
with a pressure of 1 GPa enhances the Fermi velocity as much as 40%, but it reduces the mobility by an
order of magnitude by detuning the Dirac node from the Fermi energy. Moreover, the giant magneto-
resistance at the quantum limit due to the one-dimensional confinement of Dirac electrons is critically
suppressed under pressure. These results indicate that the electron correlation is a crucial knob for
controlling the transport of a correlated Dirac semimetal.
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The relativistic Dirac-Weyl electron in a solid plays a key
role in topological quantum materials exemplified by
topological insulators and Dirac-Weyl semimetals [1,2].
The low energy excitation of Dirac-Weyl semimetals is
characterized by the massless Dirac band dispersion.
Remarkable features of a highly mobile Dirac-Weyl elec-
tron show up in various transport phenomena, such as
magnetoresistance (MR) and the anomalous Hall effect [3–
11]. Since the topological band structure is strongly tied to
the crystal, inversion, and/or time-reversal symmetry, their
transport phenomena can be critically modified by the
symmetry change of the crystal structure or by the appli-
cation of an external field. For example, the Dirac semimetal
is turned into a Weyl semimetal under a magnetic field,
which manifests itself as the chiral-anomaly-induced mag-
netoresistivity [3,4], as demonstrated in Cd3As2 and Na3Bi
[5–9]. Another promising knob to control the Dirac-Weyl
electron is the electron correlation effect. It has been
proposed that this effect may lead to a k-nonlinear
deformation or dynamical mass gap of the Dirac cone in
two-dimensional Dirac semimetals [12–17], or cause a
topological change of band structure in three-dimensional
Dirac-Weyl semimetals in proximity to the Mott transition
[18–23]. Therefore, the quantum transport phenomena of
Dirac-Weyl electron can be critically controlled by the
electron correlation, but it has rarely been demonstrated
experimentally so far.
The Dirac semimetal state of perovskite iridate AIrO3

(A ¼ Ca, Sr, and Ba) offers a rare opportunity to study the
quantum transport of Dirac-Weyl electrons in a strongly
correlated region near the Mott transition. In AIrO3, Ir4þ

with the formal electron configuration 5d5 constitutes the

orthorhombic perovskite structure of space group Pbnm, as
illustrated in Fig. 1(a), which yields a nearly half-filled
Jeff ¼ 1=2 band near the Fermi energy (EF). The Jeff ¼
1=2 state is characterized by both strong electron correla-
tion and relativistic spin-orbit interaction, harboring the
Dirac line node as illustrated in Fig. 1(b). It has been
theoretically predicted that since the Dirac line node is
protected by the nonsymmorphic crystal symmetry of
Pbnm, it thus would be robust against perturbations that
keep the symmetry intact [23–25]. AIrO3 shows a para-
magnetic semimetallic behavior [26–28], and the Dirac-like
band dispersion is observed for a thin film sample of SrIrO3

[29]. A recent study based on transport measurements
combined with a theoretical calculation proposed that the
Dirac line node would be closely tuned to EF and would
yield highly mobile electrons exceeding a mobility of
60 000 cm2=Vs for CaIrO3 with a stronger electron corre-
lation [30]. The finely tuned Dirac line node enables us to
reach the quantum limit (QL) at a modest magnetic field of
about 9 T, wherein the field-induced quasi-one-dimensional
(1D) confinement of electrons in the lowest Landau level
gives rise to a giant positive MR with a MR ratio exceeding
5500%at 2K and 14T. Specifically, a theoretical calculation
shows that the Fermi velocity vF of the Dirac dispersion is
significantly renormalized by the electron correlation due to
the criticality of the Mott transition. In other words, such a
Dirac band structure could be manipulated to a large extent
by controlling the electron correlation strength, although it
has not been observed to date. Here we demonstrate that the
Dirac band-dispersion and transport properties inCaIrO3 are
extremely sensitive to a change in the electron correlation
effect, which can be finely controlled by hydrostatic
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pressure. The magnetotransport measurements and the
theoretical calculations suggest that a reduction in electron
correlation pulls apart the Dirac line node from the Fermi
energy and increases Fermi velocity of the Dirac electron,
which results in a large reduction of the Dirac electron
mobility as well as a vanishing of the giant positive MR at
the QL.
Single crystals of perovskite CaIrO3 were synthesized

under high pressure (1 GPa) at 1200 °C using the cubic
anvil-type facility [30]. We measured longitudinal resis-
tivity (ρxx) and Hall resistivity (ρyx) using the four-terminal
method from2 to 300K.The sample is installed into aCuBe-
type cylinder with Daphne 7373 oil for the measurements
under hydrostatic pressure.We note that a small tilting of the
sample inside the pressure cell does not affect the results
[31]. The electronic structure is calculated with density
functional theory (DFT) combined with the dynamical
mean-field theory (DMFT) [32], which takes account of
the on-site Coulomb interaction. In the DFT calculation, we
used the Perdew-Burke-Ernzerhof exchange-correlation
functional [33] in the WIEN2K program [31,34].
Application of pressure is a well-established tool for

controlling electron correlation. Hydrostatic pressure usu-
ally enhances bandwidth (W) via the change of GdFeO3-
type lattice distortion in orthorhombic perovskite oxides
[37,38], effectively reducing the electron correlation effect
measured by U=W. Figure 1(c) shows the temperature (T)
dependence of ρxx at 0 and 3.2 GPa. ρxx shows a metallic
behavior above 150 K, but a prominent peak at around
20 K. The density of thermally activated carriers decreases
with lowering T and becomes almost constant below
10 K, whereas mobility increases with lowering T; the

counterbalance of these two quantities appears to cause the
peak of ρxx at 20 K [30]. Under pressure, ρxx does not
significantly change above 50 K, while it shows a small
enhancement at low T, as shown in the Fig. 1(c) inset.
On the contrary, ρyx changes remarkably with pressure.
Figure 1(d) shows ρyx, which is measured by applying the
magnetic field (electric current) along the c axis (a axis) at
2 K. ρyx is linear with the magnetic field in the low field
region but shows a kink at around 3 T. As the pressure
increases, the slope of ρyx decreases and the kink structure
gradually becomes blurred. At 3.2GPa, the kink is no longer
clear, and the ρyx-B curve becomes smooth.We note that the
presence of a phase transition or the anomalousHall effect is
not evident, and that the kink corresponds rather to the
threshold of the QL of the inner Fermi surface (FS) of the
Dirac line node (see also Supplemental Material [31]).
Although CaIrO3 is a semimetal with multiple carriers, it
has been demonstrated that the charge transport in the lower
field region is governed by electrons of the inner FS, which
show the lowest density and highest mobility among the
carriers [30]. In other words, the carrier density of the inner
FS can be approximately estimated using theHall coefficient
RH in the low field region using the single carrier model (see
also the Supplemental Material [31]). Figure 1(e) shows the
T dependence of j1=eRHj as ameasure of the carrier density.
At 0 GPa, j1=eRHj decreases with lowering T and is nearly
constant below 20 K [30,39]. A similar T dependence is
observed at 3.2 GPa, but j1=eRHj at low T is much larger
than that at 0 GPa. We define the carrier density ne by
j1=eRHj and calculate the electron mobility μe. Figure 2(a)
shows the pressure dependence ofne andμe at 2K.At 0GPa,
ne and μe are estimated to be 1 × 1017 cm−3 and
4.2 × 104 cm2=V s, respectively. With increasing pressure,
ne is rapidly enhanced and reaches 8 × 1017 cm−3 at
3.2 GPa, whereas μe is dramatically reduced down to
4 × 103 cm2=Vs. This contrasts with the pressure effect
on the conventional correlated metals, where the application

FIG. 1. (a) An illustration of the crystal structure of ortho-
rhombic perovskite CaIrO3. (b) Schematic view of Dirac-like
dispersion in the ka-kc plane near the line node (blue line). The
purple (red) circle denotes the inner FS (outer FS) at the EF.
(c) Temperature dependence of the resistivity under 0 and
3.2 GPa. (Inset) Magnified view of the low temperature region.
(d) The Hall resistivity at 2 K under various pressures. (e) Temper-
ature dependence of the inverse Hall coefficient j1=eRHj as a
measure of the carrier density at 0 and 3.2 GPa.

FIG. 2. (a) Pressure dependence of the carrier density ne
(left axis) and mobility μe (right axis) at 2 K. (b) The MR under
various pressures at 2 K. (Inset) Pressure dependence of the MR
ratio ð½ρxxðBÞ − ρxxð0Þ�=ρxxð0ÞÞ at 2 and 14 T (blue and red
dashed lines).
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of pressure tends to increase the carrier mobility while
keeping the carrier density constant.
The MR also shows a remarkable change under pressure,

as shown in Fig. 2(b). Here we applied both the magnetic
field and the electric current along the a axis. At 0 GPa,
with increasing the magnetic field, ρxx initially increases up
to about 2 T and then moderately decreases, accompanying
the Shubnikov–de Haas (SdH) oscillation from the outer FS
up to 8 T. Above 8 T, ρxx abruptly increases, wherein the
electrons of the outer FS reach the QL, and hence all of the
Dirac electrons start to occupy the lowest Landau level
(LL), which is attributed to the field-induced quasi-1D
confinement of the Dirac electrons [30]. Interestingly, the
large positive MR is rapidly suppressed under pressure and
nearly diminishes above 3 GPa. The Fig. 2(b) inset
exemplifies the MR ratio ð½ρxxðBÞ − ρxxð0TÞ�=ρxxð0TÞÞ
at B ¼ 2 and 14 T plotted as a function of pressure. At
14 T, the MR ratio exceeds 150% at 0 GPa but decreases to
0% at around 2.5 GPa, further showing a slightly negative
(−7%) MR at 3.2 GPa. This is in contrast to the MR at a
lower magnetic field prior to the QL, e.g., 2 T, which is
nearly independent of pressure.
Figures 3(a) and 3(b) show the SdH oscillations of the

outer FS and inner FS, respectively, at various pressures.
The oscillation component is derived by subtracting the
nonoscillating background from the raw data, which is
shown after normalization by the nonoscillating compo-
nent. Here we note that the SdH oscillation of the inner FS
is clearly observed in ρyx as well as in the MR for Bkc
(Figs. S1 and S2 in the Supplemental Material [31]). The
oscillation amplitude of the outer FS gradually decreases
with increasing the pressure and eventually diminishes

above 1.5 GPa. The peak and dip positions of the
oscillation slightly shift to a smaller value of 1=B, i.e.,
to a higher magnetic field region, and their interval appears
to be nearly pressure independent. Similarly, the peak and
dip positions of the inner FS moderately shift toward a
smaller value of 1=B with pressure. The oscillation ampli-
tude of the inner FS is moderately reduced under pressure,
but it remains finite even at 3.2 GPa. The MR for Bkc
shows a similar oscillation, albeit with a smaller amplitude
[Fig. S2(a) in the SupplementalMaterial [31] ]. These results
suggest that the inner FS is less subject to the pressure-
induced dehancement of scattering time than the outer FS is.
In order to quantify the variation of the Fermi surface,
we plot the LL fan diagram for the outer and inner FSs in
Figs. 3(c) and 3(d), respectively, and determine the oscil-
lation frequencyBF and phase shiftϕ following the Lifshitz-
Onsager quantization rule, in which BF=B ¼ n − ϕ with
integer n. Here the peak (dip) and dip (peak) positions of
Δρxx=ρxx (Δρyx=ρyx) are assigned to integers and half-
integers, respectively. The fan plots of both the outer
and the inner FS appear to be approximately linear with
n, indicating that the effect of Zeeman splitting can be
ignored. At 0 GPa, the extracted BF for the outer FS
(inner FS) is 10.9 T (3.5 T), which corresponds to the
extreme cross-section area of Fermi surface SF ¼ 1.0 ×
10−3 Å−2 (3.3 × 10−4 Å−2). The slope of the fan plot for the
outer FS is nearly independent of pressure, while that of
the inner FS monotonically decreases with increasing the
pressure. ϕ appears to increase slightly under pressure for
both the outer and inner FSs. As shown in Fig. 4(a), the SF of
the inner FS increases monotonically with applied pressure

FIG. 3. Oscillatory component of Shubnikov–de Haas oscillations of (a) the outer FS and (b) the inner FS around the Dirac line node
under various pressures, with offsets for clarity. Black (gray) triangles denote the positions where the Landau index is an integer (half-
integer). Red dotted lines are a guide for the eye. The oscillatory component is derived by dividing by the nonoscillating component after
subtraction of the nonoscillating component from the raw data. The Landau index plot of (c) the outer FS and (d) the inner FS under
various pressures.
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and triples at 3.2 GPa. This contrasts with the case of the
outer FS, which remains nearly the same under pressure.
From the thermal damping of amplitude [Figs. S3(a) and

S3(b) in the Supplemental Material [31] ] [40,41], we
derived the cyclotron mass mc to be 0.21 m0 (0.13 m0),
with m0 being the bare electron mass and the Fermi
velocity vF ¼ 1.0 × 105 m=s (1.0 × 105 m=s) for the outer
FS (inner FS) at 0 GPa. We note that vF is nearly identical,
as expected, between the two FSs within experimental
accuracy. With increasing pressure, the mc of the outer
FS (inner FS) is reduced to 0.14 m0 (0.12 m0) at 1 GPa.
Consequently, the vF of both FSs increases nearly in
parallel with pressure and reaches about 1.4 × 105 m=s
at 1 GPa, which is larger by 40% than that at 0 GPa
[Fig. 4(b)]. Given that both the inner and outer bands
remain k linear under pressure, the energy of the line node
(ELN) measured from the Fermi energy increases from
9 meV (0 GPa) to 15 meV (1 GPa) [Fig. 4(c)]. Figures 4(d)
and 4(e) illustrate the essence of the pressure variation of
the band structure around the Dirac line node.
The theoretical calculation on the basis of DFTþ DMFT

demonstrates that the vF is scaled by the renormalization
factor due to the electron correlation and thus can be a good
measure of electron correlation [30,31]. At 0 GPa, from the
comparison between the experiment and the DFTþ DMFT

results, the effective on-site Coulomb interaction Ueff is
estimated to be about 1.8 eV. Here we define the effective
electron correlation ueff ¼ Ueff=W normalized by the
bandwidth W. To clarify the correspondence between the
pressure and ueff , we plotted the calculated vF as a function
of ueff=ueff (0 GPa) so as to fit the experimental result
[Fig. 4(b)]. The pressure reduces ueff=ueff (0 GPa) to 0.84 at
1 GPa. This is in accord with the pressure-induced
enhancement of W due to the anticipated reduction of
GdFeO3-type distortion [37,38]. We also compare the ELN
of experiment and theory. As described above, the ELN
increases, by 60% at 1 GPa. This increasing rate is
consistent with the theoretical result (50%) when we
normalize the ELN by its value at 0 GPa [Fig. 4(c)], though
the overall scale of the ELN itself appears larger in theory.
Finally, we discuss the pressure-induced reduction of the

giant MR at the QL. As argued previously [30], the giant
MR originates from the magnetically induced quasi-1D
confinement at the QL of the outer FS. The threshold of the
QL is determined by the cross section SF of the outer FS.
Therefore, one might consider the possibility that the onset
of giant MR would shift toward a higher magnetic field
than the upper limit of our measurement (14 T) if the SF
were enhanced under pressure. This, however, is not the
case since the SF of the outer FS shows little pressure
variation, as shown in Fig. 4(a). The observed anomalous
reduction of the giant MR is related to the fact that the
mobility decreases rapidly under pressure. As described
above, the enhancement of the vF under pressure reduces
the mc for both the outer and inner FSs. Since the mobility
is described by the relaxation time divided by the transport
mass within semiclassical theory, this means that the
relaxation time is reduced by the application of pressure.
Indeed, the quantum relaxation time τQ of the outer FS,
which is derived from an analysis of the Dingle plot of the
quantum oscillation, rapidly decreases under pressure, as
shown in Fig. 4(b). Because of the Luttinger sum rule, the
enhancement of the total electron density of the Dirac
bands (a summation of the outer and inner FSs) under
pressure suggests that the electrons are transferred from
other bands. Indeed, the DFTþ DMFT results show that,
with a decreasing Ueff , the flat valence band around the Γ
point shifts toward higher energy and enlarges the hole-
pocket FS as illustrated in Fig. 4(f) [30]. The emergence of
such a band with a relatively large density of states would
significantly promote the intervalley electron scattering
between the U and Γ points, leading to a reduction of τQ
with pressure. In other words, it is likely that the enhanced
intervalley electron scattering, triggered by a reduction of
the effective electron correlation, reduces the electron
mobility and smears out the Landau levels of the outer
FS, which results in the disappearance of the giant MR in
the QL as well.
In summary, we have demonstrated that the mobility of

Dirac electrons can be controlled by an order of magnitude

FIG. 4. (a) Pressure dependence of the cross section area SF of
the Fermi surface. (b) The Fermi velocity vF, and (c) the energy of
the line node ELN measured from the Fermi energy. Red (blue)
circles are the experimental results of the outer (inner) FS. The
dashed line represents an extrapolated line calculated using the
DFTþ DMFT. The open circles in (b) represent the scattering
time τQ of the outer FS estimated from the SdH oscillation
analysis. The colored broad lines in (a) and (b) are a guide for the
eye. The band structures near the Dirac line nodes (d) at ambient
pressure and (e) at 1 GPa. Light green planes denote the Fermi
level. (f) Sketch of the band structure around the U and Γ points.
As pressure is applied, the band around the U point shifts
downward, while that around the Γ point shifts upward as a result
of carrier compensation’s obeying the Luttinger sum rule.
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by the modest hydrostatic pressure in the correlated Dirac
semimetal of perovskite CaIrO3. Magnetotransport mea-
surements combined with a theoretical calculation have
revealed that a modest pressure of 1 GPa effectively
reduces the electron correlation and enhances the Fermi
velocity of Dirac dispersion by as much as 40%. An
analysis of the quantum oscillation has suggested that
the reduction of electron correlation detunes the energy of
the Dirac line node from the Fermi level and promotes the
intervalley electron scattering, leading to a vanishing of the
giant positive MR at the QL. These results suggest that
electron correlation is a key parameter for controlling the
emergent quantum transport in Dirac semimetals of a
strongly correlated region near the Mott criticality.
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