
 

Magnetic Doublon Bound States in the Kondo Lattice Model

Roman Rausch,1,* Michael Potthoff,2 and Norio Kawakami1
1Department of Physics, Kyoto University, Kyoto 606-8502, Japan

2Department of Physics, University of Hamburg, Jungiusstraße 9, D-20355 Hamburg, Germany

(Received 25 September 2019; published 18 November 2019)

We present a novel pairing mechanism for electrons, mediated by magnons. These paired bound states
are termed “magnetic doublons.” Applying numerically exact techniques (full diagonalization and the
density-matrix renormalization group, DMRG) to the Kondo lattice model at strong exchange coupling J
for different fillings and magnetic configurations, we demonstrate that magnetic doublon excitations exist
as composite objects with very weak dispersion. They are highly stable, support a novel “inverse” colossal
magnetoresistance and potentially other effects.
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Motivation.—The Mott-insulating state of the single-
band Hubbard model, driven by repulsive Coulomb inter-
action, remains an enduring paradigm in strongly correlated
electron physics. An excitation of electrons across the Mott
gap to the upper Hubbard band forms “doublons,” quasi-
particles which are stabilized by the strong Hubbard
interaction U and which persist as bound states on a
timescale growing exponentially with U [1,2]. This stabil-
ity provides a bottleneck in the relaxation dynamics [3], and
several propositions have been made to exploit this effect.
(i) Since doublons effectively behave as hard-core bosons
with an attractive interaction, the creation of a metastable
superfluid state is conceivable. Being an excited state far
from equilibrium, however, such a state has to be engi-
neered in an optical lattice [4] or by photodoping [5].
(ii) The stability of doublons on a long timescale makes
Mott insulators candidate materials for solar cells [6,7]. In
this case, incident light creates a doublon-hole excitation
which quickly recombines if there is no interaction, leading
to merely diffusive charge separation. With interaction, on
the other hand, a stable doublon is created that can be
separated from the hole more efficiently. (iii) The so-called
“quantum distillation” is a cooling method for atoms in
optical lattices [8–10]. Having trapped a number of
doublons and then releasing the trap, one observes that
while fast components of the block escape, the rest bunches
together, leading to an increase of the local double
occupancy and hence to an approximate band insulator
with low entropy.
Here, we demonstrate the existence of a novel quasi-

particle, the “magnetic doublon.” Opposed to the conven-
tional one, it is stabilized by magnetic degrees of freedom
rather than by a strong Hubbard U. The magnetic doublon
is in fact a bound state of a conventional doublon and a
magnon. It requires a magnetic background and consists of
a double occupancy in the vicinity of a spin-flip excitation,

thus being a quasiparticle that is itself formed out of two
quasiparticles.
We will argue that the Kondo lattice model (KLM) is the

most simple system that hosts the magnetic doublon. Key
to an understanding of the binding mechanism is the limit
of a strong local exchange coupling J. This regime is of
high relevance for materials like doped manganites [11,12]
and is precisely the limit accessible in the simulation of the
KLM by an ultracold 173Yb gas in an optical lattice [13]. As
the concept is fairly general, one should expect magnetic
doublons in other contexts as well, e.g., in multi-orbital,
strong-J systems, such as Hund’s metals [14]. The mag-
netic doublon provides an alternative route to the same
functionalities (i)–(iii) of the conventional doublon but in
addition to that also has a couple of further intriguing
properties as will be shown here.
Two-electron exact solution.—The quintessence of the

magnetic doublon concept can be already understood in the
two-electron case (N ¼ 2). We consider a one-dimensional
lattice with periodic boundaries; this is convenient methodi-
cally, but not essential. The KLM Hamiltonian reads

H ¼ −T
X

hijiσ
ðc†iσcjσ þ H:c:Þ þ J

X

i

Si · si: ð1Þ

Here, c†iσ creates an electron with the spin projection σ ¼
↑;↓ at site i. Furthermore, si ¼

P
σσ0 c

†
iστσσ0ciσ0=2 (with the

Pauli matrices τ) is the spin of the electron at site i and Si is
the local spin with quantum number 1=2. J > 0 denotes the
antiferromagnetic (AFM) exchange interaction. The hop-
ping amplitude T ≡ 1 between nearest neighbors (denoted
by the angle brackets hiji) fixes the energy and time units
(ℏ≡ 1). The ground state of the model in the strong-J
regime on L sites is ferromagnetic (FM) with total spin
S ¼ ðL − NÞ=2, for N ¼ 1; 2;…; L − 1 and becomes a
singlet S ¼ 0 at half filling N ¼ L [15].
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For N ¼ 2 electrons, i.e., at most one doublon, we can
develop a “doublon band theory” [16]. Effective doublon-
doublon interactions show up at higher fillings; this is
discussed later. We perform full diagonalization to simul-
taneously get the many-body eigenstates of H, the particle-
number operator N̂, the squared total spin operator
S2
tot ¼ ½PiðSi þ siÞ�2, and the total momentum operator

P̂ (derived in Ref. [17]), with the corresponding quantum
numbers E, N ¼ 2, SðSþ 1Þ, and K, respectively. Several
spin symmetry sectors are possible: S ¼ ðLþ 2Þ=2 yields
the trivial fully polarized case where the spin exchange ∝ J
is inactive. S ¼ L=2, i.e., one spin flip away from full
polarization is discussed in the Supplemental Material [18].
Here, we focus on the case S ¼ ðL − 2Þ=2 (two spin flips),
as this sector also contains the ground state.
Figure 1 displays the results. Four types of states can

be distinguished by calculating the average local spin
correlation per electron hS · siloc=N ≡P

ihSi · sii=N and
the total double occupancy hndi≡P

ihni↑ni↓i. In the

lowest-energy states (labeled Pþ P), the electrons are
almost completely AFM correlated with the localized spins,
so that hS · siloc=2 ≈ −3=4. This causes a fully polarized
local-spin system to be favorable because the “kinetic” term
∝ T of H is minimized. For one electron, this limit of a
“magnetic polaron” has been amply investigated in the past
[19–21]. If one of the polarons decays into an FM-aligned
electron and a magnon, we get hS · siloc=2 ≈ ð−3=4þ
1=4Þ=2 ¼ −1=4 (labeled Pþ S). If both polarons decay,
we get the ferromagnetic correlation hS · siloc=2 ≈þ1=4
(labeled Sþ S). However, in between these two scattering
“continua,” around E ¼ 0, one finds solutions with
hS · siloc=2 ≈ 0 and hndi ≈ 1, which can thus be identified
as doublon states (labeled D). We note that switching the
sign of J from AFM to FM simply exchanges the scattering
with the polaron part, but does not affect the presence of the
doublon in between.
Magnetic doublon.—Now, zooming into the doublon

states (topmost panel of Fig. 1), we discover that there are
in fact two distinct features with a small gap in between, a
narrow and a broad one. The narrow one is expected to
form a continuum of states in the L → ∞ limit. Varying J,
we find that its bandwidth scales as W ∼ J−3 for strong J
(see Fig. 2). The magnetic doublon corresponds to the
broad structure composed of L eigenstates. Its dispersion
has minima at K ¼ �π and the bandwidth scales as
W ∼ J−1 (Fig. 2).
It is possible to analytically derive a first-order effective

model that projects onto the states of the broad doublon
band by using T=J as a small parameter and neglecting
single occupancy (which is essentially the Schrieffer-Wolff

FIG. 1. Many-body eigenenergies as a function of the total
momentum K of the one-dimensional KLM with L ¼ 12 sites at
J ¼ 12. Each cross refers to an eigenstate in the sector N ¼ 2,
S ¼ ðL − NÞ=2. The plot is symmetric to K ¼ 0. Color code (for
K ≤ 0, left) gives the local spin-spin correlation per electronP

ihSi · sii=N, and (for K > 0, right) the double occupancyP
ihni↑ni↓i. From lowest to highest energy, the states are

Pþ P, two polarons; Pþ S, polaron and scattered electron;
D, magnetic doublon; Sþ S, two scattered electrons. The
doublon bands are magnified in the upper part.

FIG. 2. Points: Doublon bandwidth as obtained by full diag-
onalization for various cases. (i) S ¼ ðL − 2Þ=2, FM ground state
(L ¼ 12); for broad and narrow dispersions see text. (ii) S ¼ L=2,
FM ground state (L ¼ 16), see Ref. [18]. (iii) S ¼ 0, AFM
ground state (L ¼ 8), see text. Lines: Fits W ¼ const × J−r as
indicated, except for the broad doublon bandwidth which is taken
from the effective model Eq. (2).
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transformation, cf. Refs. [4,20,22] and Ref. [18]). We
obtain the following result:

Heff ¼ J0K
X

hiji
ðd†i dj þ d†jdi − 2ndi n

d
j þ ndi þ ndj Þ

· ðSi · Sj − 1=4Þ: ð2Þ

Here, d†i ¼ c†i↓c
†
i↑ creates a double occupancy at site i, now

a hard-core boson (with ½di; d†j � ¼ δij and d†2i ¼ 0). The

corresponding density is ndi ¼ d†i di. As compared to the
related expression for the Hubbard model [4], we find a
different hopping amplitude J0K ¼ 8T2=3J (rather than
2T2=U) and, more importantly, an interaction with the
magnetic substrate, given by the spin-spin product in
Eq. (2). Thereby, the sign of the doublon-doublon inter-
action becomes dependent on the nature of the magnetic
ground state. It is attractive in the ferro- and repulsive in the
antiferromagnetic case.
It is instructive to employ the transformation d†i ¼

ð−1ÞiTþ
i , ndi ¼ Tz

i þ 1=2 from hard-core bosons to
pseudospin operators Ti, which fulfill the usual spin
commutation relations. We obtain a rather compact spin-
pseudospin model:

Heff ¼ −2J0K
X

hiji
ðTi · Tj − 1=4Þ · ðSi · Sj − 1=4Þ; ð3Þ

which is manifestly invariant under the spin- and charge-
SU(2) symmetries of the system [23,24].
Note the following important consequence: In the

effective model, the subspace S ¼ ðL − 2Þ=2 contains
one doublon and one magnon (the number of states is
L2), and Heff only gives a nonzero result if they are at least
nearest neighbors. The delocalization of L of these bound
states thus forms the “broad” dispersion of the magnetic
doublon band, while the remaining ones have zero energy.
Numerical evidence shows that the degeneracy of the

remaining states is lifted in third order, see Fig. 2, resulting
in a narrow continuum where a doublon and a magnon are
propagating independently through the lattice. A scaling of
the bandwidth ∼J−3 is also seen in the results for the S ¼
L=2 sector; see the Supplemental Material [18] and Fig. 2.
For S ¼ L=2, the phase space is highly restricted and one
can either have a doublon or a magnon, but not both. Still,
the doublon can delocalize in a higher-order process by
creating and absorbing a virtual magnon. We suspect that
the same mechanism is at work for the narrow doublon
band of Fig. 1.
Inverse CMR effect.—The broad bandwidth of the

magnetic doublon is strongly dependent on the underlying
magnetic configuration. This is demonstrated in Fig. 2
where it is compared with the bandwidth for the case of an
antiferromagnetic singlet (S ¼ 0). Such a ground state can
easily be stabilized by adding a weak direct coupling

Jdir
P

hiji Si · Sj to the Hamiltonian (Jdir ¼ 0.1). We find
the same four types of states, but the magnetic doublon
bandwidth now scales as W ∼ J−0.35. Hence, the magnetic
doublon has a substantially broader dispersion if the spin
system is not polarized homogeneously. This is intuitively
clear, as it requires a bound magnon to propagate, and the
antiferromagnet (but also a disordered local-moment para-
magnetic state) provides a much larger phase space in terms
of spin flips to assist the propagation. We note that as
compared with the conventional colossal magnetoresist-
ance (CMR) effect, transport is alleviated by spin disorder
rather than impeded. Hence, there is an “inverse” CMR
effect in controlling the nonequilibrium transport prope-
rties of magnetic doublons via temperature or magnetic
switching.
Electron spectroscopy at finite filling ratio.—In princi-

ple, the most direct access to observing magnetic doublon
excitations is given by appearance-potential spectroscopy
[25,26], where there are two additional electrons in the final
state, predominantly created at the same site. This is shown
in the Supplemental Material [18]. Here, we instead focus
on k-resolved single-electron spectroscopy, which is a
widely established experimental technique. For conven-
ience we will consider electron addition, i.e., the inverse
photoemission spectrum from systems with low band
filling. This is related to standard photoemission (one-
electron removal) at high band fillings via particle-hole
symmetry.
We demonstrate that the magnetic doublon can be seen

as a satellite for a finite filling n ¼ N=L in the thermody-
namic limit (large N, large L). This is shown in Fig. 3,
which displays the spin-resolved spectrum at n ¼ 1=4
(one-eighth filling), given by

Aσðk;ωÞ ¼ h0jckσδðωþ E0 −HÞc†kσj0i; ð4Þ

where ckσ ¼
P

i e
−ikRiciσ=

ffiffiffiffi
L

p
, and where j0i is the N-

particle ground state with magnetization M, which is the
eigenvalue of

P
iðSzi þ szi Þ. Note that the spin-↑ spectrum

has been rigidly shifted to align with the spin-↓ spectrum
for better comparison. In the latter case, ω ¼ 0 refers to the
Fermi edge.
To calculate the spectral function, we have used a

density-matrix renormalization group (DMRG) code which
actually exploits the full SU(2) spin symmetry along with
the U(1) charge symmetry of the model, combined with the
Chebyshev polynomial technique [16,27]. As before, we
control the total spin S, but are able to resolve the result
according to M in a postprocessing step from a single
calculation.
In the spin-down (minority) case, the lowest-frequency

states are given by processes where the added electron
forms a polaron with the magnetic substrate. In the strong-
coupling limit, we can think of the ground state as
being filled by noninteracting polarons which occupy the
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lowest-momenta states, so that the dispersion of the
excitation (“P”) starts at k ≈ nπ ¼ π=4 for ω ¼ 0.
Flipping the incident electron spin then leads to a higher
scattering state (“S”), but there is also some probability to
find another electron with which a doublon state can be
formed (“D”). In the spin-up (majority) case, the electron
has a high probability to find empty sites (because of the
low density n), upon which it propagates with a free
dispersion of bandwidth W ¼ 4T (S). However, there is
again some probability to form a doublon with an electron
from the ground state (D). In both cases, the energy
distance of the doublon to the scattering states is about
J=2 and to the lowest polaron states about 3J=2, consistent
with the two-electron eigenstates of Fig. 1. The doublon
excitation (D) has an extremely weak dispersion and is
basically spin independent. We did not attempt to resolve
its internal structure, i.e., the bound magnetic doublon and
the narrow continuum.
Real-time dynamics.—Finally, we demonstrate the sta-

bility ofmagnetic doublons. To this end a local doublon-hole
excitation is created suddenly at t ¼ 0 by applying the
correlated-hopping operator Ci;iþ1¼

P
σð1−ni;−σÞciσc†iþ1,

σniþ1;−σ locally to the ground state, i.e., jΨð0Þi ¼
Ci;iþ1j0i Then this state is propagated in time, jΨðtÞi ¼
expð−iHtÞjΨð0Þi, and the total double occupancy
hndtotðtÞi ¼

P
ihΨðtÞjndi jΨðtÞi is measured at each step.

Apart from being a general study of doublon decay in real
time, this setup could also be regarded as a crude modeling
of the effect of an incident photon [6]. It is advantageous to
use a correlated-hopping operator instead of just ciσc

†
iþ1;σ, as

this ensures that the double occupancy will be zero on site i
and one on site iþ 1 independently of the initial configu-
ration. We furthermore subtract the ground-state contribu-
tion of hndtoti to facilitate the comparison for different values
of J. Since the largest cross section for this excitation is
found at half filling, we consider the AFM singlet state
(S ¼ 0) at n ¼ 1. We first calculate the ground state of an
infinite system using the variational uniformmatrix-product
states (VUMPS) algorithm [28] with SU(2) spin and U(1)
charge symmetry; then a heterogeneous section [29] is
assembled where the excitation is allowed to spread [30].
We find that the magnetic doublon picture continues to

hold in this regime, even as the many-body effects are
strongest. Figure 4 shows that, after a few inverse hoppings,
the double occupancy settles at a constant plateau quite
close to the initial value of (almost) unity without any
further decay on the accessible time scale. The larger J, the
closer it stays to unity. As compared to doublon dynamics
in the Hubbard model [6,31,32], there are important
differences resulting from the different binding mecha-
nisms: A Fourier analysis (not shown) indicates that there
are two dominating oscillation frequencies in the Kondo
case, which are roughly given by J=2 and 3J=2.
Furthermore, in the Hubbard case the maximal velocity
of the wave front is basically given by the Fermi velocity
vmax ≈ 2T, while in the Kondo case we find vmax ≈ T,
which in fact corresponds to the polaron velocity in the
strong-J limit [20]. Thus, qualitatively, a propagating
doublon excitation of an antiferromagnetic Mott insulator
should be thought of as free-electron-like, opposed to the
polaron picture that applies to the strong-J antiferromag-
netic Kondo insulator.

FIG. 4. Time dependence of the total double occupancy (with
ground-state value subtracted) after a doublon-hole excitation as
obtained for an infinite MPS with S ¼ 0, n ¼ 1 on a hetero-
geneous section of L ¼ 100 lattice sites. Inset: real-space snap-
shot at time t=T ¼ 40 of the double occupancy (orange,
propagating to the right) and the empty occupancy (black,
propagating to the left) for J ¼ 12.

FIG. 3. Inverse photoemission spectrum Eq. (4) as obtained by
Chebyshev-expansion DMRG for n ¼ 1=4 (N ¼ 16, L ¼ 64),
S ¼ ðL − NÞ=2 and J ¼ 12. Left: spin-down (minority). Right:
spin-up (majority, shifted rigidly by Δω ≈ 11.2 to align with the
spin-down spectrum). Both spectra are symmetric with respect to
k ¼ 0. P, polaron; S, scattered state; D, doublon.
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The inset of Fig. 4 shows a real-space snapshot of the
double occupancy hndi i and the density of empty sites
hnhi i ¼ 1 − hnii þ hndi i (with the ground-state value again
subtracted) for J ¼ 12 and a late time. The two wave
packets separate in opposite directions with some spread,
but little charge recombination. This demonstrates an
efficient mechanism for charge separation and thus has
potential relevance for solar cell devices [6].
Conclusions.—We have introduced the notion of mag-

netic doublons that are formed due to magnons which bind
electrons in pairs. Our calculations for the Kondo lattice in
one dimension have not only demonstrated their existence,
but also suggest a number of highly functional properties
and unconventional effects to be exploited in the future.
This includes metastable superconductivity due to Bose
condensation of doublons as well as quantum distillation
and efficient carrier separation. Candidate materials could
be the long-studied manganites [11,12], rare-earth chalco-
genides or Hund’s metals [14]. We also note that the Kondo
model in the strong-J regime has been implemented on an
ultracold lattice recently [13]. Opposed to conventional
doublon excitations in the Hubbard model, magnetic
doublons have a more variable dispersion which is highly
sensitive to the magnetic background. The latter implies a
colossal magnetoresistance effect, though curiously an
inverse one, as the magnetic-doublon mobility decreases
with increasing homogeneity of the spin system.
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