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An exceptional point (EP) is a non-Hermitian degeneracywhere both eigenvalues and their corresponding
eigenvectors coalesce. It was recently proposed and demonstrated that such spectral singularity can be
utilized for enhanced sensing. Potential drawbacks of EP sensing include both fundamental resolution limit
and noise effects that might mask the hypersensitive resonant splitting. Here, we address these issues by
proposing a parity-time (PT )-symmetric sensing circuit bearing a sixth-order EP. By employing capacitive
coupling channel as a sensing platform, we achieve an enhanced resonance shift proportional to the fourth-
order root of the perturbation strength and maintain a high resolution for weak perturbation. Due to the low-
pass feature of our circuit, thermal noise ismitigated down to a level comparable to its Hermitian counterpart,
despite the presence of highly noisy gain and loss elements. Our EP sensing scheme offers combined
enhanced sensitivity, improved resolution and nondegraded thermal noise performance, showing an exciting
prospect for next-generation sensing technologies.
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Introduction.—Sensing is of fundamental importance in
modern society, ranging from industrial process monitoring
[1], biomedical sample ingredient analysis [2], to massive
deployment of wireless sensor network for the internet of
things [3,4]. Most sensors rely on resonant structures,
analyzing spectrum shifts of a single resonance or spectrum
splitting of two degenerate modes when a perturbation to be
sensed occurs. Typical examples include nanoparticle detec-
tion with ultrahigh-Q photonic microresonators [5] and
wireless sensors based on LC microwave resonators [6]. In
general, the magnitude of frequency splitting is linearly
proportional to the perturbation strength due to the
Hermitian nature of these sensing systems [7,8]. The
degenerate sensing point in these Hermitian systems is thus
known as diabolic point (DP) [7,8].
Recent advances in the fields of non-Hermitian physics

and PT symmetry [9–26] have revealed that enhanced
sensitivity can be achieved based on a new type of
degenerate point, known as exceptional point (EP). At
EPs, two or more eigenvalues and their corresponding
eigenvectors coalesce, leading to a nondiagonalizable
Hamiltonian that demonstrates an Nth-order root law of
eigenfrequency splitting when N degenerate eigenmodes
are lifted by the perturbation [27]: Δω ∼ ϵ1=N , where ϵ is
the perturbation strength. The sensitivity is thus propor-
tional to ð1=NÞϵ1=N−1, which, for small perturbation, is
much higher than the linear sensitivity Δω ∼ ϵ of DPs, as
evidenced by some experimental demonstrations [23,24].
Nonetheless, the possibility to implement EP sensing in

various setups has triggered an ongoing debate over the last

year [28–32]. On the one hand, there is a fundamental
resolution limit for EP sensing schemes based on purely
lossy systems due to the presence of imaginary part of the
eigenfrequencies [28]. This imaginary component leads to
a broadening of the reflection or transmission spectrum and
further sets a fundamental resolution limit on the sensitivity
of the device [28]. This bound is analogous, in another
context, to conventional optical diffraction limit, where the
angular resolution is limited by resolvable distance between
two overlapping Airy disk diffraction patterns from two
adjacent point sources [33,34]. On the other hand, parity-
time (PT )-symmetric sensing systems with balanced loss
and gain units can potentially improve the resolution limit,
given that proper readout design and perturbation strategy
are deployed. However, these gain and loss elements
unavoidably add noise into the system [29–31], imposing
another fundamental bound on the sensitivity.
In this Letter, we endeavor to address these issues by

proposing an enhanced sensing scheme based on a sixth-
order EP supported by a PT -symmetric electronic circuit
[see Fig. 1(a)]. Instead of detecting the resonant frequency
splitting, we detect the eigenfrequency shift by measuring
the reflected signals at the lossy side of our circuit. First, we
set our system to a static EP with zero eigenfrequency.
When the system is perturbed from the ideal EP condition,
a reflection dip emerges, and shifts away from the static
point. The reflection dip exactly matches the purely real
eigenfrequency of the system under perturbation and shows
a resonant shift following a fourth-order root law with
respect to the perturbation strength. These resonant shifts
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can be measured with high resolution, even for very weak
perturbations. We further verify this claim through a
comparative study of our EP sensing scheme with a DP
sensing protocol supported by a similar circuit layout. As
we show in the following, due to the low-pass feature of our
sensing circuit, thermal noises are alleviated to an identical
level as the corresponding DP sensing scheme.
Sixth-order exceptional point sensing system.—Our

sensing scheme is based on a PT -symmetric circuit
supporting a sixth-order EP. The circuit design is shown
in Fig. 1(a). In the pink-highlighted region, two resonators
formed by a grounded capacitor C and a floating inductor
L, are coupled with a grounded capacitor C0. A positive
resistor R and a negative resistor -R are connected in
parallel with the left and right resonator, respectively.
To reveal the sensing mechanism in our scheme, we

formulate the corresponding non-Hermitian Hamiltonian
and study its eigenfrequency. Using Kirchhoff’s laws, the
dynamics of the voltages at various nodes of the isolated
system follow these equations:

V̈1 þ γ _V1 þ V1 − V2 ¼ 0;

V̈2 þ 2μV2 − μV1 − μV3 ¼ 0;

V̈3 − γ _V3 − V2 þ V3 ¼ 0; ð1Þ

where _Vn ¼ dVn=dτ, V̈n ¼ d _Vn=dτ, n ¼ 1, 2, 3, τ ¼ ω0t
is the normalized time, ω0 ¼ 1=

ffiffiffiffiffiffiffi
LC

p
is the resonant

frequency of the resonator, γ ¼ R−1
ffiffiffiffiffiffiffiffiffi
L=C

p
is the intrinsic

loss or gain rate of the LC resonator, μ ¼ C=C0 is the
coupling coefficient between the two resonators. It is easy
to show that Eq. (1) is invariant under a joint time-reversal
(τ → −τ) and parity operation (V1 ↔ V3; V2 ↔ V2), and
therefore the system is PT symmetric [13]. Constructing a

state vector for this six variable linear system Ψ ¼
½V1V2V3

_V1
_V2

_V3�T , we can recast Eq. (1) into the
Schrödinger-type equation:

i
dΨ
dτ

¼

2
666666664

0 0 0 i 0 0

0 0 0 0 i 0

0 0 0 0 0 i

−i i 0 −iγ 0 0

iμ −2iμ iμ 0 0 0

0 i −i 0 0 iγ

3
777777775
Ψ ¼ HeffΨ; ð2Þ

where Heff is the effective Hamiltonian describing
the dynamics of our circuit. The eigenfrequencies are
found through the associated characteristic equation
DetjHeff − Iωj ¼ 0:

ω2½ω4 þ ðγ2 − 2 − 2μÞω2 þ 1þ 2μ − 2μγ2� ¼ 0; ð3Þ

where I is the six-dimensional unity matrix. Solving
Eq. (3), we find the six eigenfrequencies:

ω1;2 ¼ � 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2μ − γ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2 − 4γ2 þ 4μγ2 þ γ4

qr
;

ω3;4 ¼ � 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2μ − γ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4μ2 − 4γ2 þ 4μγ2 þ γ4

qr
;

ω5;6 ¼ 0: ð4Þ

There is always a pair of eigenfrequencies corresponding
to the dc solution of the system, with the eigenstate
Ψ ¼ ½ 1 1 1 0 0 0 �T . Moreover, for an appropriate
choice of γ, μ, all eigenfrequencies are degenerate at

(a)

(b) (c) (d)

FIG. 1. Hypersensitive PT -symmetric sensing circuit design and its possible application scenarios. (a) PT -symmetric sensing circuit.
The pink region consists of a pair of PT -symmetric resonators. The negative impedance −R is realized by an amplifier feedback circuit
with noninverting configuration, where the gain coefficient is 1þ Rg=Rf. The PT -symmetric resonator pair is connected in shunt to a
resistance Z0 and then in series to a microwave generator with internal impedance Z0 and voltage Vg. (b) Supersensitive microfluid flow
sensor based on capacitive perturbation. The microfluid speed is sensed by measuring the temperature gradient created by the heater.
(c) Supersensitive pressure sensor based on capacitive perturbation. A pressure sensitive membrane responds to external pressure and
changes the effective capacitance of C0. (d) Supersensitive accelerometer based on capacitive perturbation. Acceleration is sensed by
attaching a dielectric slab sandwiched within the capacitor plates and connected to two springs.
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ωEP ¼ 0 with the same eigenvector Ψ¼½1 1 1 0 0 0�T.
This sixth-order EP occurs for the following:

γEP ¼ ð
ffiffiffi
5

p
þ 1Þ=2; μEP ¼ ð

ffiffiffi
5

p
− 1Þ=4; ð5Þ

which are inherent properties of the circuit topology. The
sixth-order EP is ideally suited for sensing applications if
we consider a perturbation to the system. Here, we assume
that the perturbation is applied to the coupling capacitor
with μ ¼ μEPð1þ ϵÞ, modeling the realistic scenario
where the capacitor serves as a small sensing platform
[see Figs. 1(b)–1(d)]. Since the sensed quantity is linearly
proportional to the perturbation strength ϵ [35], the eigen-
frequency response with respect to the sensed quantity is
identical to the perturbation strength.
One-port scattering and readout setup.—We connect the

PT -symmetric resonator pair in shunt to a resistor Z0 and
in series with a microwave generator having same internal
impedance Z0. This readout design ensures that the whole
sensing network remains matched around the EP to the
internal impedance of the generator, avoiding backward
propagating waves reflected into the generator [38].
According to the readout circuit design in Fig. 1(a), the
reflection coefficient can be expressed as

S11 ¼ −Z0ð2Zin þ Z0Þ−1; ð6Þ

where Zin is the input impedance of the PT -symmetric
resonator pair,

Zin ¼
iγR½ω4 − iγω3 − ð1þ 2μÞω2 þ 2iγμωþ μ�
ω½ω4 þ ðγ2 − 2 − 2μÞω2 þ 1þ 2μ − 2μγ2� : ð7Þ

As expected, the denominator of Zin corresponds to the
characteristic equation of thePT -symmetric system, which
implies that the resonant dips of S11 directly correspond to
the system eigenfrequency. The dependence of the resonant
shift on a small perturbation ϵ can be found through a series
expansion of the eigenfrequency around the EP:

δωEP ¼ ϵ
1
4 þ

ffiffiffi
5

p
− 1

8
ϵ
3
4 þOðϵ54Þ þ � � � ; ð8Þ

where “O” is an asymptotic notation.
We confirm our theoretical analysis by simulating the

reflection amplitude for different perturbation strengths in
Fig. 2(a). When the perturbation ϵ is 0, the system exactly
operates at a sixth-order EP with eigenfrequency ωEP ¼ 0,
leading to a resonant dip on the reflection spectrum. When
the coupling coefficient μ increases, the whole sensing
system deviates from the sixth-order EP. Consequently,
another resonant dip arises and shifts to the right, clearly
seen in Fig. 2(a). We extract these resonant dips δωEP and
show them in Fig. 2(c). Our data indicate that the resonant

frequency shift is proportional to the fourth-order root of
the perturbation strength, as expected.
To prove that the higher-order EP in our electronic circuit

offers enhanced sensitivity compared to conventional
sensors, we study an analogous Hermitian sensing circuit
supporting a DP. Referring to Fig. 1(a), the Hermitian
counterpart of our circuit layout can be realized by
removing both the loss element R and the gain element
-R. The Hermitian system operates at a second order DP as
the coupling coefficient μ goes to 0. In Fig. 2(b), we report
the reflection amplitude associated with this circuit for
various perturbation strengths. The corresponding eigen-
frequency shift δωDP is also shown in Fig. 2(c). Both curves
confirm that the resonant frequency shift is linearly propor-
tional to the perturbation strength for DP sensing. We
compare the sensitivity of our EP and DP sensing schemes
in Fig. 2(d), showing that the higher-order EP sensing
scheme indeed provides enhanced sensitivity.
A perturbation on the resistor, inductor, or capacitor in

the resonator, in principle, can result in frequency shift or
splitting. However, these perturbation schemes inevitably
bring in complex eigenfrequencies, which broaden the line
shape and create a wide unresolvable region [28], as shown
in previous EP sensor demonstrations [23,24]. Our design
is devoid of these complex eigenfrequencies and therefore
dramatically improves the sensing resolution, especially for
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FIG. 2. Amplitude of reflection coefficient, eigenfrequency
shift, and sensitivity at EP and DP. (a) Amplitude of reflection
coefficient with different perturbation strength for EP sensing
system. (b) Amplitude of reflection coefficient for DP sensing
system. (c) Eigenfrequency shift at EP and DP, dashed lines
represent the corresponding series expansion truncated to the first
order. (d) Sensitivity at EP and DP versus the perturbation.
The components are chosen as follows: L ¼ 100 μH,
C ¼ 100 pF, R ¼ 618.03 Ω, Z0 ¼ 50 Ω. For EP sensing system
C0 ¼ 323.6 pF; for DP system C0 ¼ 0.1 μF. The above ADS
simulation results confirmed our theory (see the Supplemental
Material for circuit schematic [35]).
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small perturbations. Our assessments are further confirmed
in the Supplemental Material [35]. In practice, sophisti-
cated techniques should be involved to maintain a good
match between the gain and loss parameter [32].
Mitigating thermal noise.—PT -symmetric circuitry

relies on additional gain and loss elements, prone to add
noise to the system. This issue has raised a degree of
skepticism from the community concerning the effective-
ness of EP sensing protocols [29–31]. There are shot noise,
flicker noise, and thermal noise in an electronic circuit.
Since the shot noise mainly exists in circuits with tunneling
diode or vacuum tube, and flicker noise can be significantly
reduced below the level of thermal noise by choosing wire-
wound resistors [39–42], we aim for analyzing thermal
noise in this Letter. In the following, we will show how
thermal noise is alleviated in our sensing scheme.
Thermal noise in an electronic circuit is characterized by

the power spectral density (PSD) which reads: SiðfÞ ¼
4kBTjHiðfÞj2Ri [39–42], where kB is the Boltzmann
constant, T is the temperature, Ri is the resistance of the
noise source, and HiðfÞ is the transfer function. The latter
defines the voltage ratio between the probing point [see
Fig. 1(a)] and the noise source. We first look into the PSD
associated with the internal impedance of the generator.
Assuming that there is an equivalent voltage noise source in
series with the internal impedance Z0, we find that the
transfer function takes the form H1ðfÞ ¼ Zin=ð2Zin þ Z0Þ.
Since the resistor Z0 is in shunt with the internal impedance
Z0, the transfer function is H2ðfÞ ¼ H1ðfÞ, leading to
an identical PSD to the internal impedance Z0. For the
loss element R, the transfer function is H3ðfÞ ¼
ZinZ0ðZinZ0 þ RZ0 þ 2RZinÞ−1. The noise from the neg-
ative impedance -R is more complicated to assess because it
depends on the specific circuit design implementing the
negative impedance. Here, we assume to use an amplifier
circuit with noninverting feedback configuration. The
feedback impedance is thus set to R, which indicates that
the noise PSD is proportional to R. The thermal noise PSD
from each noise source is shown in Fig. 3(a), which
indicates that the noise PSD from the gain and loss
elements are negligible compared to those stemming from
the two Z0 elements. We conclude therefore that the total
thermal noise PSD in the PT -symmetric sensing system
and its corresponding Hermitian system are almost iden-
tical. Figures 3(c) and 3(d) show the theoretical and
numerical thermal noise PSD provided by ADS software,
which are in excellent agreement with each other.
Integrated noise power and signal to noise ratio (SNR)

are important metrics of thermal noise as well. In a circuit
withN independent noise sources, the total noise power can
be expressed as

Pnoise ¼ V2
noise ¼

XN
i¼1

Z
∞

0

SiðfÞdf; ð9Þ

whereVnoise is the noise voltage. Since the noise power from
the resistor R and -R are negligible compared with the
impedance Z0, we only consider the noise power from the
internal impedance Z0 and shunt resistor Z0. Substituting
the transfer function into Eq. (9), the approximate thermal
noise power from each Z0 takes the form: kBT=2C, indi-
cating that the noise power is independent of the impedance
value Z0, the inductanceL, and the coupling capacitanceC0.
Therefore, the noise power in our PT -symmetric sensing
network and the Hermitian counterpart are:

PPT
noise ≈ PHermitian

noise ≈ kBT=C; ð10Þ
an expression identical to the integrated noise of a low pass
RC filter [42]. This result indicates that the integrated
thermal noise of the PT -symmetric and Hermitian sensing
systems are identical due to the low pass feature of our
design. When the system is perturbed, the total noise power
slightly changes, but this variation is negligible.At EP orDP,
the resonator pair is essentially open, which results in Vg=2
signal voltage at the probing point, whereVg is thevoltage of
the generator. Therefore, the SNR at EP or DP is

SNREP ≈ SNRDP ¼ ðVg=2Þ2
Pnoise

≈
CV2

g

4kBT
: ð11Þ

Finally, we study the influence of thermal noise on
measurement results. The probing voltage Vprobe and the

f (Hz)

S
i(

f)
 (

V
2 /H

z)

S
i(

f)
 (

V
2 /H

z)

105 106 107 108 109 101010-24

10-23

10-22

10-21

10-20

10-19

10 -18

Z0

R

-R

(a)     -symmetric system

f (Hz)

S
(f

) 
(V

2 /H
z)

S
(f

) 
(V

2 /H
z)

1.0x10+06 2.0x10+06 3.0x10+06 4.0x10+06
2.0x10-19

2.5x10-19

3.0x10-19

3.5x10-19

4.0x10-19

4.5x10-19

5.0x10-19

Theory

ADS Simulation

(c)      -symmetric system

f (Hz)
1.0x10+06 2.0x10+06 3.0x10+06 4.0x10+06

1.0x10-19

2.0x10-19

3.0x10-19

4.0x10-19

5.0x10-19

6.0x10-19

7.0x10-19

8.0x10-19

Theory

ADS Simulation

(d) Hermitian system

f (Hz)
105 106 107 108 109 101010-24

10-23

10-22

10-21

10-20

10-19

10-18

Z0

(b) Hermitian system

FIG. 3. Thermal noise power spectral density. The circuit
parameters are identical to Fig. 2. (a) Thermal noise power
spectral density from the impedance Z0, from the resistor R, and
from the gain element -R, respectively, in the PT -symmetric
system. (b) Thermal noise power spectral density from the
impedance Z0 in the corresponding Hermitian system. (c) Total
thermal noise power spectral density in the PT symmetric
system, dashed line indicates the ADS simulation results. (d) Total
thermal noise power spectral density in the corresponding
Hermitian system, the dashed line indicates ADS simulation
results (see the Supplemental Material for circuit schematic [35]).
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reflection coefficient S11 in our sensing network has an
intuitive relation: S11¼2ðVprobeþVnoiseÞ=Vg−1. Therefore,
the deviation of the reflection coefficient is

D½S11�PT ≈D½S11�Hermitian ¼ 4

V2
g
V2
noise ≈

4kBT
CV2

g
; ð12Þ

where “D” indicates the deviation. Equations (10)–(12)
prove that our EP sensing system shares the same thermal
noise performance compared with the corresponding DP
sensing scheme. Figure 4 shows the simulation of mea-
surements under the influence of thermal noise. Figure 4(a)
corresponds to the sensing circuit we designed in this work,
where thermal noise has little influence on the measure-
ment results, confirming that thermal noise in our EP
sensing system is fully manageable by choosing a proper
working capacitance value in the resonator. Figure 4(b)
shows a marginal design, for which the measurement
results can still be recorded. Figure 4(c) demonstrates a
failed design, where the signal is fully buried by thermal
noise and no sensing can be performed.
Conclusions.—In this Letter, we have put forward a

sensing circuit based on a sixth-order EP, showing an
enhanced resonant shift proportional to the fourth-order
root of the perturbation strength. Due to the balanced loss
and gain configuration and our perturbation scheme, the
resolution is also improved. Our PT -symmetric system not
only serves as a sensing platform, but also filters out
high-frequency thermal noise, leading to a nearly identical
thermal noise level compared to the corresponding
Hermitian DP sensing scheme. Considering the combined
high-sensitivity, improved resolution, and nondegraded
thermal noise performance, we envision that accelerom-
eters, pressure sensors, or microfluid flow speed sensors
may be implemented following this scheme with unprec-
edented sensitivity, resolution, and excellent thermal noise
performance, as sketched in Fig. 1.
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