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We present results for the strange contribution to the electromagnetic form factors of the nucleon
computed on the coordinated lattice simulation ensembles with Nf ¼ 2þ 1 flavors of OðaÞ-improved
Wilson fermions and an OðaÞ-improved vector current. Several source-sink separations are investigated
in order to estimate the excited-state contamination. We calculate the form factors on six ensembles with
lattice spacings in the range of a ¼ 0.049–0.086 fm and pion masses in the range of mπ ¼ 200–360 MeV,
which allows for a controlled chiral and continuum extrapolation. In the computation of the quark-
disconnected contributions, we employ hierarchical probing as a variance-reduction technique.
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The contributions of strange sea quarks to the nucleon
electromagnetic form factors, which characterize the charge
and current distribution in the nucleon, have been of high
interest in the last decades. Experimentally, strange electro-
magnetic form factors can be measured through the parity-
violating asymmetry, arising from the interference of the
electromagnetic and neutral weak interactions, in the elastic
scattering of polarized electrons on unpolarized protons.
The first measurement by the SAMPLE experiment, at
backward angles and lowQ2, yielded a result forGs

M which
is consistent with zero [1]. The G0 collaboration combined
measurements at forward and backward angles and found
a first indication of a nonzero Gs

E and Gs
M, contributing≲10% to the nucleon electromagnetic form factors [2,3].

A first nonzero measurement has been obtained by the
A4 experiment at MAMI with a four momentum transfer
squared of Q2 ¼ 0.22 GeV2, where Gs

E ¼ 0.050�
0.038� 0.019 and Gs

M ¼ −0.14� 0.11� 0.11 [4]. A
recent measurement from the HAPPEX collaboration at
Q2 ¼ 0.624 GeV2 found a value for the combination of
the strange electromagnetic form factors consistent with
zero Gs

Eþ0.517Gs
M¼0.003�0.010�0.004�0.009 [5],

confirming a previous measurement at Q2 ¼ 0.48 GeV2,
where a value consistent with zero was found as well [6].
For a recent review of the experimental status of the strange
electromagnetic form factors, see [7]. On the theoretical
side, lattice QCD simulations allow for a nonperturbative

determination of the strange nucleon form factors. This is a
challenging calculation, due to the appearance of quark-
disconnected diagrams, which are notoriously difficult to
evaluate. The most expensive part of the pertinent simu-
lation is the calculation of the trace of an all-to-all
propagator. In order to obtain a good signal, the application
of variance-reduction techniques, such as hierarchical
probing [8], are crucial. A prominent example to illustrate
the importance of a precise knowledge of the strange
nucleon form factors is the weak charge of the proton.
At tree level and without radiative corrections, the weak
charge is connected to the weak mixing angle through
QWðpÞ ¼ 1–4 sin2 θW . Hence, through measurements of
QWðpÞ, one can determine a fundamental parameter of the
Standard Model. The experiment proceeds by measuring
the parity-violating asymmetry, from which QWðpÞ can be
isolated, provided that the required nucleon form factors to
describe the hadronic contribution are known [7,9]. Here
the strange electromagnetic form factors Gs

E and Gs
M, as

well as the strange axial form factor Gs
A, play a crucial role,

as they constitute the leading uncertainty. In this Letter, we
closely follow the strategy outlined in [10].
We make use of the coordinated lattice simulation (CLS)

Nf ¼ 2þ 1 OðaÞ-improved Wilson fermion ensembles
with the tree-level-improved Lüscher-Weisz gauge action
[11]. The fermion fields have open boundary conditions
in time in order to prevent topological freezing [12].
Simulations have been performed such that the sum of
the bare quark masses is constant, which implies a constant
OðaÞ-improved coupling [13]. See Table I for a list of
ensembles used in this Letter. We obtain the strange
electromagnetic form factors of the nucleon by calculating
the disconnected three-point function with a vector current
insertion in the strange quark loop. The relevant diagram
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and our chosen momentum setup is depicted in Fig. 1. The
disconnected three-point function factorizes into separate
traces for the strange quark loop and the nucleon two-point
function

Cs
3;Vμ

ðq; z0; p0; y0; x;ΓνÞ
¼ he−iqxLs

Vμ
ðq; z0Þ · C2ðp0; y0; x;ΓνÞiG; ð1Þ

where Ls and C2 denote the strange loop, given in Eq. (4),
and the nucleon two-point function, respectively.
The calculation of nucleon two-point function C2 pro-

ceeds via the standard nucleon interpolator

NαðxÞ ¼ ϵabc½uaβðxÞðCγ5Þβγdbγ ðxÞ�ucαðxÞ; ð2Þ

and Γ0 ¼ 1
2
ð1þ γ0Þ, which ensures the correct parity of the

nucleon at zero momentum. Wuppertal smearing [16] is
applied at the source and the sink for all quark propagators.
We increase the statistics of the nucleon two-point function
using the truncated solver method [17,18]. Traces over the
strange quark loops can be stochastically estimated using
four-dimensional noise vectors η. For a local current

Vs ¼ s̄ðxÞΓsðxÞ; ð3Þ

the trace over the strange quark loop then reads

hLs
Γðq; z0ÞiG ¼ −

X
z∈Λ

eiq·zhtr½Ssðz; zÞΓ�iG

¼ −
X
z∈Λ

eiq·zhη†ðzÞΓψðzÞiG;η; ð4Þ

with

Dsψ ¼ η; ð5Þ
where Ds denotes the Dirac operator for the strange quark,
and the sum is taken over the spatial volume Λ. Instead of a
local current, we consider the OðaÞ-improved conserved
vector current in this Letter

VμðzÞImp ¼ 1

2
½s̄ðzþ μ̂aÞð1þ γμÞUμðzÞ†sðzÞ

− s̄ðzÞð1 − γμÞUμðzÞsðzþ μ̂aÞ�
þ acV∂νðs̄ðzÞσμνsðzÞÞ; ð6Þ

with the improvement coefficient cV taken from [19].
Furthermore, we use hierarchical probing [8], which
replaces the sequence of noise vectors by one noise vector
multiplied with a sequence of Hadamard vectors. We find
that the statistical error of the strange quark loop is reduced
by a factor of 5 when using 512 Hadamard vectors,
compared to the estimate based on 512 U(1) noise vectors,
for nearly the same cost. The quark loops in this study were
obtained by averaging two independent noise vectors with
512 Hadamard vectors each. To extract the strange con-
tribution to the electromagnetic form factors of the nucleon,
we consider the ratios (see [20–22])

Rs
Vμ
ðz0; q; y0; p0;ΓνÞ

¼
Cs
3;Vμ

ðq; z0; p0; y0;ΓνÞ
C2ðp0; y0Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2ðp0; y0ÞC2ðp0; z0ÞC2ðp0 − q; y0 − z0Þ

C2ðp0 − q; y0ÞC2ðp0 − q; z0ÞC2ðp0; y0 − z0Þ

s
: ð7Þ

Performing the spectral decomposition and only taking the
ground state into account, these ratios read

FIG. 1. Disconnected three-point function with a vector current
inserted in the strange loop (red dot). For the range of momenta at
the source and current insertion, we use n⃗2p=q ≤ 6, while at the
sink, we restrict the range to n⃗2p0 ≤ 2 (n⃗2p=q=p0 denote the units of
squared lattice momenta).

TABLE I. Gauge ensembles used in this Letter, where Ncfg denotes the number of gauge configurations and the last column
corresponds to the total number of measurements for the ratio in Eq. (7). The values for the lattice spacing and pion and kaon masses are
taken from [14], while the nucleon masses are estimated using the two-point function in this work. For the ensembles marked with an
asterisk, the pion and kaon masses have been obtained from dedicated runs in connection with [15].

β a (fm) N3
s × Nt mπ (MeV) mK (MeV) mN (MeV) mKL Ncfg Nmeas

H105 3.40 0.086 36 323 × 96 278 460 1037 6.44 1020 391 680
N401� 3.46 0.076 34 483 × 128 289 462 1042 8.59 701 314 048
N203 3.55 0.064 26 483 × 128 345 441 1111 6.90 772 345 856
N200 3.55 0.064 26 483 × 128 283 463 1061 7.23 856 383 488
D200 3.55 0.064 26 643 × 128 200 480 989 10.01 278 124 544
N302� 3.70 0.049 81 483 × 128 354 458 1120 5.55 1177 527 296
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Rs
Vμ
ðz0; q; y0; p0;ΓνÞ⟶

z0;ðy0−z0Þ→∞ 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðEp0−q þmÞðEp0 þmÞEp0Ep0−q

p TðṼs
μ;Γν; q; p0Þ; ð8Þ

TðṼs
μ;Γν; q; p0Þ ¼ tr½ΓνðEp0γ0 − ip0γ þmÞṼs

μðqÞðEp0−qγ0 − iðp0 − qÞγ þmÞ�; ð9Þ

where Ṽs
μ can be obtained using the parametrization of the nucleon matrix element

hN; k; sjVμðxÞjN; k0; s0i ¼ ūsðkÞ
�
γμF1ðQ2Þ þ iσμν

qν
2m

F2ðQ2Þ
�
us

0 ðk0Þeiqx: ð10Þ

We proceed by evaluating the trace in Eq. (9) for four different projectors

Γ0 ¼
1

2
ð1þ γ0Þ; Γk ¼ Γ0iγ5γk; k ∈ f1; 2; 3g; ð11Þ

combined with all components of the vector current Ṽs
μ, leading to the asymptotic behavior of the ratios in the following

form:

Rs
Vμ
ðz0; q; y0; p0;ΓνÞ⟶

z0;ðy0−z0Þ→∞
ME

μνðq; p0ÞGs
EðQ2Þ þMM

μνðq; p0ÞGs
MðQ2Þ: ð12Þ

In analogy with Ref. [23], we collect all kinematic
prefactors ME

μν and MM
μν at a common Q2 into a matrix

M and write the ratios as a vector R, which results in a
(generally) overdetermined system of equations for the
form factors G

MG ¼ R; M ¼

0
BBB@

ME
1

..

.

ME
N

MM
1

..

.

MM
N

1
CCCA;

G ¼
�
Gs

E

Gs
M

�
; R ¼

0
B@

R1

..

.

RN

1
CA: ð13Þ

The system can be solved by minimizing the least-squares
function

χ2 ¼ ðR −MGÞTC−1ðR −MGÞ; ð14Þ
where C denotes the covariance matrix. Note that we
neglect all equations with vanishing kinematical factors
(ME ¼ MM ¼ 0) and average equivalent equations, i.e.,
with identical ME and MM. The latter average can already
be carried out at the level of the nucleon three-point
functions, where the momenta of the nucleon states at
the source and the sink of the three-point functions are
related by spatial symmetry [24]. In addition, averaging the
nucleon two-point functions over equivalent momentum
classes, we construct the ratios in Eq. (7) from these
averaged correlation functions. Solving the system of
equations at each z0 and y0 leads to the so-called effective

form factors, which still suffer from excited-state contami-
nation. Following Refs. [16,25–27], we obtain an estimate
of the asymptotic value of the form factors using the
summation method with source-sink separations in the
range of y0 ¼ 0.5–1.3 fm. In the case of the magnetic form
factor, the plateau estimates show a clear trend toward the
results obtained using the summation method. For the
electric form factor, both methods agree already at small
values of y0. The effective form factors for several source-
sink separations are shown in Fig. 2. No significant
deviation from a plateau around the midpoint is visible.
(We have included the effective mass plot for the nucleon
on ensemble N200 in the Supplemental Material [28].)
We will use the summation method data as our

standard dataset, since they are less affected by excited-state
contamination, compared to the plateau fits. Nevertheless,
we include the analysis of the plateau data, for a conservative
choice of source-sink separation of 1 fm using 5 points
around the midpoint, as an estimate for the uncertainty
coming from excited states. In order to further analyze the
kaon mass and lattice spacing dependence, we use model-
independent z-expansion fits [30,31] to fifth order to extract
the radii and magnetic moment. (We have explicitly checked
that going to a maximum order of 10 does not change the
fit results.) The form factors can be expanded as

GE=MðQ2Þ ¼
X5
k¼1=0

aE=Mk zðQ2Þk;

zðQ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
−

ffiffiffiffiffiffi
tcut

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffi

tcut
p : ð15Þ

PHYSICAL REVIEW LETTERS 123, 212001 (2019)

212001-3



Since the physical ω and ϕ mesons are narrow resonances
and because one cannot easily establish whether or not they
are unstable particles on the analyzed ensembles, we
use 4m2

K for the value of the cut in the z expansion, where
we use the ensemble kaon mass for mK (see Table I). We
stabilize the fits using Gaussian priors centered around
zero for all coefficients with k > 1. To this end, we first
determine the coefficients a0;1 from a fit without priors and
subsequently use the maximum of these coefficients
to estimate the width of the priors, i.e., ak>1 ¼ 0�
c × maxfja0j; ja1jg. We find that for c ¼ 5 the extraction
of the radii and the magnetic moment are stable and lead
to consistent results even after applying a cut of
Q2 < 0.5 GeV2. Finally, we estimate the effect of this choice
on the final observables by repeating the analysis with the
prior width doubled. From the z-expansion fits, we can
extract the strange magnetic moment μs, as well as the
electric and magnetic charge radii ðr2E=MÞs,

μs ¼ aM0 ; ð16Þ

ðr2E=MÞs ¼ −
3

2tcut
aE=M1 : ð17Þ

Wehave repeated the analysis in several variations in order to
assess systematic errors and subsequently perform chiral and
continuum extrapolations. Since the radii and magnetic
moments are defined atQ2 ¼ 0, we perform the fits applying
a cut ofQ2 < 0.5 GeV2 and treat the difference to fitting all
of the data as a systematic uncertainty. This cut also ensures
that all ensembles contribute over the whole range in Q2.
In total we thus have four sets of values for the radii and
magneticmoments for every ensemble, forwhichwe analyze
the lattice spacing and kaon mass dependence.
The analyzed set of ensembles allow for a controlled

chiral and continuum extrapolation of the strange electro-
magnetic form factors. In the following, we will investigate
the kaon mass dependence using

ðr2EÞsðmKÞ ¼ c1 þ c2 logðmKÞ þ c̃1a2 þ cL1
ffiffiffiffi
L

p
e−mKL;

μsðmKÞ ¼ c3 þ c4mK þ c̃2a2 þ cL2

�
mK −

2

L

�
e−mKL;

ðr2MÞsðmKÞ ¼
c5
mK

þ c6 þ c̃3a2 þ cL3
ffiffiffiffi
L

p
e−mKL; ð18Þ

which is derived from SU(3) heavy baryon chiral pertur-
bation theory (HBChPT) [32], supplemented by terms
describing the dependence on the lattice spacing a and
the finite volume. (Note that the CLS ensembles follow the
trMq ¼ constant trajectory, and so the kaon mass and
the pion mass are therefore not varied independently.)
Since the finite-volume dependence originates exclusively
from kaon loops, we substitute the pion mass in the relevant
expression for the magnetic moment [33] by the mass of the

FIG. 3. Chiral and continuum extrapolation of the electric and
magnetic radius and magnetic moment, using the standard
method of Table II. The vertical line denotes the physical kaon
mass in the isospin limit [38].

FIG. 2. Results for the effective form factors on ensemble N200 determined via Eq. (13) at Q2 ¼ 0.156 GeV2 compared to the
estimate derived from the summation method (horizontal band).

TABLE II. Fit results for the standard fit and variations thereof.

Fit
ðr2EÞs
(fm2) μs

ðr2MÞs
(fm2) χ2=d:o:f:

Standard −0.0046ð12Þ −0.020ð5Þ −0.010ð6Þ 2.04(12)
Prior width −0.0053ð15Þ −0.020ð6Þ −0.012ð8Þ 1.47(12)
Plateau −0.0045ð14Þ −0.022ð8Þ −0.014ð8Þ 1.62(12)
Oða2Þ −0.0036ð16Þ −0.009ð7Þ −0.003ð8Þ 1.91(9)
Oðexp½−mKL�Þ −0.0049ð12Þ −0.021ð5Þ −0.010ð6Þ 1.12(9)
No cut in Q2 −0.0051ð9Þ −0.017ð5Þ −0.008ð5Þ 3.14(12)
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kaon. For a detailed discussion of the finite-volume
dependence, we refer to the Supplemental Material [28].
For the radii, we use the model-dependent ansatz of
[34,35], assuming the finite-volume dependence to be
same as for the pion form factor calculated in [36], again
replacing the pion with the kaon mass. Since our data for
the magnetic radius do not show the divergent behavior
expected from HBChPT (see Fig. 3), we amend the
expressions from [32] by the term c6. While this cancella-
tion of higher order terms was already found in Ref. [37],
we note that the convergence of HBChPT, the rate of which
strongly depends on the observable, is, in general, not
easily established.
For each of the variations of the z-expansion fit in the

previous section, we analyze the chiral behavior separately.
The chirally extrapolated values for the standard fit
procedure and the variations of the z-expansion fits
performed to assess systematic uncertainties are given in
Table II. We treat the difference of the central values for the
variations as an estimate for a (symmetric) systematic error.
In addition, we perform a fit including lattice artifacts or a
fit including finite-volume dependence to the standard z-
expansion fit. A simultaneous fit of the lattice spacing and
finite-volume dependence amounts to the determination of
four parameters from six data points for which the AICc
value is not defined. Therefore, we choose to perform
separate extrapolations in our analysis. The AICc values,
i.e., the Akaike information criterion [39] adjusted for small
sample size [40,41], for the fits including lattice spacing or
finite-volume effects, are larger by at least 24 in absolute
value compared to the minimumAICc (for the AICc values,
we use the maximum likelihood estimator for the sample
variance); i.e., the fits omitting Oða2Þ;Oðexp½−mKL�Þ are
favored. We therefore quote the fit without lattice artifacts
and finite-volume effects as our best value, using the
difference in the central value for the respective procedures
as a systematic error from finite lattice spacing and finite-
volume corrections. At the physical point, we find

ðr2EÞsphys ¼ −0.0046ð12Þð7Þð1Þð9Þð3Þð6Þ fm2; ð19Þ

μsphys ¼ −0.020ð5Þð0Þð2Þð11Þð1Þð3Þ; ð20Þ

ðr2MÞsphys ¼ −0.010ð6Þð2Þð5Þð7Þð0Þð2Þ fm2 ð21Þ

as our final estimate, where the first error is statistical and
the remaining errors come from the variations in the fitting
procedure given in Table II.
For the radii, our values are in good agreement with other

lattice determinations [34,35,42,43]. Our value for the
magnetic moment is again in good agreement with
[42,43]. The magnetic moment from [34,35] disagrees
with our estimate and with [42,43] by more than 2 standard
deviations, see Fig. 4. Our best estimate of the radii and
magnetic moment compare favorably to the available
experimental data, as can be seen from Fig. 5.
In summary, we have reported on our calculation of the

strange contribution to the electromagnetic form factors
obtained on six CLS Nf ¼ 2þ 1 OðaÞ-improved Wilson
fermion ensembles. For the calculation of the disconnected
contributions, we use the method of hierarchical probing,
which significantly reduces the statistical error. To deal
with excited-state contamination, we employ the summa-
tion method. We find agreement with plateau estimates for
large enough source-sink separations. The strange charge
radii and the strange magnetic moment are obtained on
each ensemble through model-independent z-expansion fits
and later extrapolated to the physical point. See the
Supplemental Material [28] for a summary of the extracted
form factors and z-expansion fits. Our results are compat-
ible with other lattice QCD studies and in good agreement
with experimental data. With the current set of ensembles,
the physical values for the strange charge radii and the
strange magnetic moment still have large relative statistical
errors. We aim to improve this by enlarging the number of
ensembles.
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FIG. 4. Comparison of our final values for the radii and
magnetic moments with LHPC [42], ETMC [43], and χQCD
[34,35], where the dark and light blue bands describe the
statistical error and the total error, including systematics, re-
spectively.

FIG. 5. Comparison of our standard fit, based on the z
expansion up to k ¼ 1, to the analysis of existing experimental
data [7]. The dark and light blue bands describe the statistical
error and the total error, including systematics, respectively.
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