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We present a continuum operator map that inverts the role of particles and antiparticles in three-
dimensional QED. This is accomplished by the attachment of specific holomorphic Wilson lines to Dirac
fermions. We show that this nonlocal map provides a continuum realization of Son’s composite fermions at
ν ¼ 1

2
. The inversion of Landau levels and the Dirac-cone–composite-fermion duality is explicitly

demonstrated for the case of slowly varying magnetic fields. The role of Maxwell terms as well as the
connection of this construction to a gauge-invariant formulation of 3Dgauge theories is also elaborated upon.
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Introduction.—In this Letter, we construct a particle-hole
symmetric description ofQED inD ¼ 2þ 1, whileworking
within a Hamiltonian framework in the continuum. This
construction is motivated by Son’s proposed composite-
fermion picture for quantumHall states [1], which has led to
a conjectured duality [2–6] between the Dirac cone action

S1 ¼ −i
Z

Ψ̄γμð∂μ − iAμÞΨþ � � � ð1Þ

and the composite fermion theory defined by the action:

S2¼−i
Z

χ̄γμð∂μ− iaμÞχ−
1

4π

Z
ϵμνρaμ∂νAρþ��� : ð2Þ

In the second theory A is to be regarded as an external
electromagnetic field while a is dynamical. (In our con-
vention fγμ ¼ iσ3; σ1; σ2g.)
It is important to note that the a0 variation of (2) yields a

constraint on the density of the composite fermions:
ρχ ¼ h χ† χi ¼ ðB=4πÞ. B is magnetic field associated with
A. On the other hand the electromagnetic charge density
ρe ¼ ðδS2=δA0Þ ¼ −ðb=4πÞ, where b is the magnetic field
associated with a. The associated filling fractions νe ¼
2πðρ2=BÞ and νχ ¼ 2πðρχ=bÞ are related as

2νe ¼ −
1

2νχ
: ð3Þ

This inversion is at the heart of the realization of the particle-
hole symmetry in the composite fermion picture [5,6].

From a quantum field theory point of view, the proposed
duality presents a fermionic version of the bosonic particle-
vortex duality and it has been absorbed in the web of 3D
dualities that have been the subject of much recent
investigation [7–10]. Given the growing importance of this
proposed duality in both high energy as well as condensed
matter physics, it is imperative to ask if an explicit map
between the two theories described by (1) and (2) may be
established. In this Letter, we present a continuum reali-
zation of this duality at ν ¼ 1

2
by finding an operator map

between QED and a dual gauge theory that inverts the role
of particles and antiparticles. Before presenting our con-
struction, we briefly review some salient lessons learned
from various approaches to understanding the duality
which will play an important role in what is to follow.
Effective actions obtained by integrating out Ψ and χ

provide important clues about how the proposed duality
might work. The leading IR effective actions are as follows:

S1 → S1 eff ¼ � 1

8π

Z
ϵμνρAμ∂νAρ; ð4Þ

while

S2→ S2eff ¼∓ 1

8π

Z
ϵμνρaμ∂νaρ∓ 1

4π

Z
ϵμνρaμ∂νAρ: ð5Þ

As is well known, the absolute signs of half-quantized
Chern-Simons in the two actions are ambiguous for the
case of massless fermions. The relative signs between
the various terms in the two actions are more crucial for the
purposes of this Letter. The context of topological insula-
tors [3,4] provides a microscopic physical context for
understanding why the relative signs between the Chern-
Simons terms are reversed [4]. For latter convenience, we
note that the a0 equation of motion from the second
equation above leads to
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b ¼ −B: ð6Þ

It is easily seen that eliminating the dynamical a fields from
(5) leads to (4). It is clearly desirable to understand the
emergence of effective actions mentioned along with their
relative signs independently of the context of TIs, and
examine the duality beyond the lowest order in the IR.
In a very promising development, an explicit lattice

realization of this duality was recently claimed in [11] (see
also [12–14]). Reference [11] employed the formidable
machinery of 2D bosonization to map operators on both
sides of the duality to each other. However, no continuum
analog of the lattice operator maps is presently known.
While the construction presented here is defined directly in
the continuum, it interestingly shares several parallels
with [11].
The analysis of the present Letter may be taken as

complementary to the path integral approaches [7,8] that
focus on relating currents and partition functions of (1) and
(2). The present Hamiltonian approach, which uses the
complex structure inherent to the spatial geometry has the
advantage of allowing a precise map between microscopic
degrees of freedom of QED2þ1 and its particle-hole dual.
Gauge fields and the dual photon.—Our starting point is

the realization that spatial components of gauge fields
A¼ 1

2
ðA1þiA2Þ and Ā ¼ 1

2
ðA1 − iA2Þ can be parametrized

in terms of the SLðN;CÞ-valued complex matrices M and
M† as

A ¼ −∂MM−1; Ā ¼ M†−1∂̄M†: ð7Þ

It is understood that ∂ ¼ 1
2
ð∂i þ i∂2Þ and z ¼ xi − ix2 This

parametrization—which is at the heart of the gauge
invariant formulation of gluodynamics initiated in [15]—
applies in general to non-Abelian SUðNÞ gauge fields
A ¼ −iAata, where ta are the SUðNÞ generators. An
advantage of this parametrization is that local (time-
independent) gauge transformations are simply realized
asM → UM, whereU is a unitary matrix. This implies that
H ¼ M†M is gauge invariant. H is the physical degree of
freedom in terms of which strongly coupled gluodynamics
in D ¼ 2þ 1 was formulated in [15]. The matrixM can be
regarded as a complex Wilson line as it satisfies (from its
defining relation) DM ¼ 0, where D ¼ ∂ þ A. The real
and imaginary parts of this matrix correspond to the
physical and gauge degrees of freedoms encoded in A,
respectively. This is seen most explicitly in the Abelian
limit—which is the primary focus of this Letter—where we
can express

M ¼ eθ; ð8Þ

where θ is a complex scalar. In this limit the parametriza-
tion (7) reduces to the usual gradient-curl (Hodge) decom-
position Ai ¼ ∂iImðθÞ þ ϵij∂jReðθÞ. One can also define a

set of auxiliary gauge fields which we suggestively call a,
ā—for reasons that would soon be manifest—as

a ¼ M†−1∂M†; ā ¼ −∂̄MM−1; ð9Þ

(7) and (9) yield the relations

Dā ¼ ∂̄A; D̄a ¼ ∂Ā; ð10Þ

which, in the Abelian limit, imply (6). We will now focus
on the lowest Landau levels (LLLs) for fermions coupled to
A and a, respectively, and show that for a given value of B,
the roles of particles and holes are interchanged for
fermions coupled to A and a, respectively. We first consider
the case of a constant background magnetic field B > 0. It
is also instructive—especially for comparison with [11]—
to include a mass term for the fermions. The (mass-added)
Hamiltonian following from (1) is

H½Ψ� ¼ i
Z

Ψ̄ðγiDi −mÞΨ¼ 1

2

Z
Ψ�

�
m −2iP−

2iPþ −m

�
Ψ:

ð11Þ

We can choose the gauge where Ai ¼ − 1
2
ϵijxjB and

ϵ12¼þ1.Pþ ¼ −i∂ − ði=4ÞBz̄, P−¼−i∂̄þði=4ÞBz. The
momenta are mapped to the standard oscillator variables as
Pþ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiðB=2Þp

A, P− ¼ ffiffiffiffiffiffiffiffiffiffiffiffiðB=2Þp
A†. The spectrum is given

by E2 − 4P−Pþ ¼ m2 and it is easy to see that Ψ0 ¼
ðψ1

0
Þ∶Pþψ1 ¼ 0 is a normalizable zero mode for both

E ¼ �m. The vacuum is taken to be the state where all
the negative energy levels are filled. When E ¼ þm, the
lowest energy state has positive energy, so the vacuum jΩΨi
can be identified with the Fock vacuum j0iΨ. However,
when E ¼ −jmj, the zero mode must be regarded as part of
the negative energy states. Thus the vacuum jΩΨi, in this
case is not the Fock vacuum, but must be taken to be

jΩΨi ¼ α†j0iΨ: ð12Þ

It is understood that α† is the oscillator for the zero mode in
the harmonic expansion of the field given by

Ψ ¼ αΨ0 þ
X
n

αnΨþ
n þ

X
n

β†nΨ−
n ; ð13Þ

where the quantization condition αj0iΨ ¼ 0 is implied.
Using 1

2
½Ψ†;Ψ� ¼P

nðα†nαn−β†nβnÞþ 1
2
ðα†α−αα†Þ, along

with the fact that the degeneracy is given by ðB=2πÞ, we can
compute the electronic charge density to be

ρe ¼ hΩΨj
1

2
½Ψ†;Ψ�jΩΨi ¼

B
2π

hΩΨj
1

2
ðα†α − αα†ÞjΩΨi;

¼ −
m
jmj

B
4π

: ð14Þ
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We can also read off the effective action (assuming slowly
varying B) via

ρe ¼
δ

δA0

SeffΨ ¼ −
m
jmj

1

8π

δ

δA0

Z
ϵμνρAμ∂νAρ: ð15Þ

The analysis so far recapitulates the well-known picture for
the emergence of an effective Chern-Simons action from
LLL physics. The filling fraction here is νe ¼ − 1

2
ðm=jmjÞ.

However, when one couples fermions χ (with the same
mass term) to the a fields in the same background magnetic
field B ¼ −b, the resultant Dirac equation is

�
m −2iPðaÞ−

2iPðaÞþ −m

��
χ1

χ2

�
¼ E

�
χ1

χ2

�
; ð16Þ

where−2iPðaÞ− ¼−ð2∂̄þ 1
2
zBÞ and 2iPðaÞþ¼ð2∂−1

2
z̄BÞ.

Because of the change in the sign of the magnetic field for a
relative to B, PðaÞþ now acts as the creation operator as
opposed to the previous case. The normalizable zero modes
now correspond to E ¼∓ m for ðm=jmjÞ ¼ �1, which is
the converse of case of fermions coupled to A. Using a
mode expansion for χ

χ ¼ A χ0 þ
X
n

An χ
þ
n þ

X
n

B†
n χ−n ; ð17Þ

we see that jΩ χi for E ¼ −ðþÞm is given byA†j0i χðj0i χÞ.
A is the oscillator for the zero mode of χ and
j0i χ∶Aj0i χ ¼ 0. The complete momentum space mode
expansion for Ψ and χ in a constant magnetic field is given
in the Supplemental Material [16] using which it can be
explicitly checked that the Landau levels of χ are obtained
by inverting those for Ψ for a given fixed value of B and m.
This is depicted in the figure below.

This inversion suggests that the holes of the χ field depict
particles of the Ψ field and vice versa (we will substantiate
this further later). Noting that the magnetic field experi-
enced by dual χ particles is b, with the degeneracy given by
ðb=2πÞ, the induced charge density for χ is computed to be

ρχ ¼ hΩ χ j
1

2
½ χ†; χ�jΩ χi ¼ þ m

jmj
b
4π

;

¼ m
jmj

δ

δa0

Z �
1

8π
ϵμνρaμ∂νaρ

�
: ð18Þ

We note that the sign of the Chern-Simons term is reversed
compared to (15), even though the sign of the mass term
has not changed.
But what action does (16) follow from? It is relatively

easy to see that the action whose quantization in a constant
magnetic field background generates (16) is given pre-
cisely by

SðχÞ¼−i
Z

χ̄ðγμð∂μ− iaμÞ−mÞχþ m
jmj

1

4π

Z
ϵμνρaμ∂νAρ:

ð19Þ

The gauge fields aμ are not constrained at the level of the
action. Quantization of this action in the Hamiltonian
picture in the a0 ¼ 0 gauge requires that the Gauss law
constraint ρχ ¼ h χ† χi ¼ ðB=4πÞ be solved. This is
achieved via the parametrization (9) of the spatial compo-
nents of aμ (which imply b ¼ −B), resulting in a consistent
Hamiltonian quantization of Sð χÞ. Using (18), we also see
that νχ ¼ þ 1

2
ðm=jmjÞ and satisfies (3). The complete

effective action for χ is given by the Chern-Simons term
computed from ρχ as well as the mixed term already
present in Sð χÞ.

SEffχ ¼ m
jmj

1

8π

Z
ϵμνρaμ∂νaρþ

m
jmj

1

4π

Z
ϵμνρaμ∂νAρ; ð20Þ

which agrees with (5). The two signs in (5) correspond to
the two possible values of ðm=jmjÞ. It is also understood
that Seffχ and SeffΨ are the leading order effective actions. In
general, there might be further terms depending on details
of the UV completion employed; however they are not
immediately relevant for the present discussion.
Fermions and dual fermions.—We have so far seen that

fermions coupled to the auxiliary gauge fields a satisfy the
properties of Son’s composite fermions at half-filling.
However to really establish a duality we need a map
between the Ψ and χ fermions. This is what we do next.
Let us define composite fermions χ in terms of the

original spinor Ψ by the following operator map:

�
ψ1

ψ2

�
¼

�
MðM†−1Þt χ�2
M†−1Mt χ�1

�
¼ exp ½2iImðθÞ�

�
χ�2
χ�1

�
ð21Þ

and

�
ψ�
1

ψ�
2

�
¼
�ðM†ÞtM−1 χ2

ðM−1ÞtM† χ1

�
¼ exp ½−2iImðθÞ�

�
χ2

χ1

�
: ð22Þ
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A straightforward computation now shows that, under this
map,

H½Ψ� ¼ i
Z

Ψ̄ðγiDi −mÞΨ ¼ i
Z

χ̄ðγidi −mÞ χ ¼ H½ χ�;

ð23Þ

where di is the standard covariant derivative in which A is
replaced by a. This gives us an explicit operator map from
the original electronic theory to the Hamiltonian for the
dual ( χ) fermions directly in the continuum. This is the
central result of the Letter, which we explore further below.
A few words about the nature of the dual fermions are in

order at this point. First, we note that (21) and (22) preserve
the symplectic structure in the Abelian theory. Further, the
mass terms for the two fermions are mapped to each other
without a relative sign being introduced, just as was
reported in the lattice construction [11]. The mapping of
the mass terms to each other is also crucial for consistency
with the LLL analysis performed earlier. In the Abelian
case, we can explicitly expressM as a holomorphic Wilson
line. M ¼ expðR z

−∞ iAÞ. The factor exp ½2iImðθÞ� in the
definition of χ can thus be viewed as a field dependent
gauge transformation generated by attaching two complex
Wilson lines to the original fermion Ψ. The factors of M in
(21) and (22) thus play a role similar to the monopole
operators used in [7,8]. Further, we note that both ð χΨÞ →
eiImðθÞð χΨÞ under Uð1Þ gauge transformations. The
commonUð1Þ charge allows us to interpret χ as describing
bonafide particles (as opposed to simply antiparticles of Ψ)
coupled to the gauge field aμ. Finally, we note that (21) and
(22) imply that the mode creation or annihilation operators
of Ψ and χ in constant magnetic field backgrounds are
related as

α ¼ A†; Bn ¼ αn and An ¼ βn: ð24Þ

The details leading to the above are presented in the
Supplemental Material [16]. As an added consistency
check we note that

hΩ χ j
1

2
½ χ†; χ�jΩ χi ¼ hΩΨ

1

2
½ χ†; χ�jΩΨi: ð25Þ

The left-hand side refers to the computation already
presented in section II, where jΩ χi was computed after
explicitly imposing the constraint B ¼ −b on the a field
(while no relationship was assumed among Ψ and χ) and
the quantization condition for j0i χ was the usual one:
Aj0i χ ¼ 0. The right-hand side uses the explicit map
between the fermions [(21) and (24)] and utilizes the fact
that the quantization condition for χ changes on jΩΨi,
since (24) implies that A†j0iψ ¼ 0. The BF term in (20)
imposes precisely this altered quantization condition. This

is further evident when we note that integrating out Aμ in
(20) amounts to averaging over the constraints and it yields
Seffχ ¼ −ðm=jmjÞ 1

8π

R
ϵμνρaμ∂νaρ: the expected Chern-

Simons term for χ coupled to gauge fields aμ without
any constraints vis-á-vis Aμ.
The analysis presented above extends to the massless

case. The LLL computation presented in the previous
section included a fermionic mass term, which served as
a regulator, making it manifest that the spectra of H½Ψ� and
H½ χ� approach the zero energy state (in the massless limit)
from opposite directions (this is clear from the earlier
figure). However, the operator map [(21) and (22)] allows
us to work directly in the massless limit. For example, the
relations (24) implied by the map ensure the correct relative
signs between the induced Chern-Simons terms of χ and Ψ
once a Fock vacuum is defined for the operator algebra
(αj0i ¼ 0). It is straightforward to check that all other
statements made in the previous section also apply directly
to the massless limit once the quantization condition for χ
is fixed via the operator maps (21), (22), and (24).
Maxwell terms.—Finally we focus on making sense of

the ellipses in (1) and (2), which stand for potential
Maxwell terms. Having analyzed the mapping of the
fermionic Hamiltonians, we now show how the Maxwell
terms for the A and a fields transform into each other under
(21) and (22). For this purpose we employ the gauge
invariant Hamiltonian framework for 3D gauge fields
coupled to fermions developed in [17], where it was shown
how the photonic Hamiltonian is sensitive to the choice of
gauge invariant fermionic variables. In particular, the sign
of the induced Chern-Simons term uniquely dictates how
gauge invariant fermionic variables may be constructed by
attaching holomorphic Wilson lines to Dirac fermions.
For the purposes of specificity, we fix ðm=jmjÞ ¼ −1.
Following [17], the gauge invariant fermionic variable
compatible with the induced CS term for a is

Λ̃ ¼
�
λ̃1

λ̃2

�
¼

�
M† χ1

M−1 χ2

�
; ð26Þ

where M ¼ M†−1. This change of variables can be
regarded as a 2D chiral transformation, whose Jacobian
is a Wess-Zumino-Witten (WZW) functional [17]. The
measure on Hilbert space of the composite fermion trans-

forms under the above as [17] d χ�d χ → e−2SðH−1Þd ˇ̃ΛdΛ̃,
where ˇ̃Λ is the canonical conjugate to Λ̃. S denotes the
WZW functional [17,18] and it is the boundary piece of the
Chern-Simons term induced by the fermions in the effective
action picture. Using the currents,

Jl ¼ ∂HH−1; Jr ¼ −H−1∂H; ð27Þ

the Maxwell Hamiltonians for the A and a fields take on the
following forms:
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H½A� ¼ e2

2π

Z �
−Jl

δ

δJl
þ 1

ðx − yÞ2
δ

δJlðxÞ
δ

δJlðyÞ
�

þ 1

2e2

Z
B2 ð28Þ

and

H½a� ¼ e2

2π

Z �
−Jr

δ

δJr
þ 1

ðx − yÞ2
δ

δJrðxÞ
δ

δJrðyÞ
�

þ 1

2e2

Z
b2: ð29Þ

We will refer to [17,18] for a derivation of the gauge
invariant photonic Hamiltonians (we present a brief outline
in the Supplemental Material [16]). Here we draw attention
to the fact that the first terms in H½A� and H½a� act as mass
terms for the photon, and they are a direct consequence of a
the nontrivial measure (S) on the configuration space. The
second term in the Hamiltonians is nothing but the two-
point function in the OPE of the WZW model [15]. Noting
that Jl ¼ ∂½ReðθÞ�, Jr ¼ −∂½ReðθÞ�, and b ¼ −B, it is
trivial to see that the two Hamiltonians map to each other
term by term. As with the fermionic Hamiltonian analyzed
earlier, the photonic analysis continues to hold whenm ¼ 0
so long as care is taken to let m approach zero from a fixed
side of the real axis. Finally, we point out that the WZW
functional is well known in the context of 2D bosonization,
which, in turn, was central to the lattice approach to this
duality [11]. The interchange of the left and right currents
Jl ↔ Jr between the A and a descriptions is very remi-
niscent of a similar phenomenon observed on the lattice
[11]. It would be extremely interesting to explore if a closer
connection exists between the gauge invariant continuum
approach presented here and lattice bosonization methods.
Conclusions and future directions.—In the present Letter

we have shown that d ¼ 2þ 1 QED with a single species
of Dirac fermion can be mapped to a dual description via an
operator map (21) and (22) where (i) the dual fermions
possess properties expected of Son’s composite fermions
including the inversion of filling fractions (3) and the
generation of the expected effective actions [(15) and (20)].
The operator map explicitly inverts the roles of particles
and holes while endowing both Ψ and χ with the same
Uð1Þ transformation properties. (ii) The gauge field A is
mapped in a Hamiltonian framework to a dual photon a
defined by (10). The relationship between the gauge fields
solves the Gauss’s law constraint for the action of the
composite fermion (19). And (iii) parity violating mass
terms for the fermions—which map to each other—act as
regulators in this analysis. The entire analysis continues to
hold in the m ¼ 0 limit so long as care is taken to let m
approach zero keeping its sign fixed. The upper and lower
signs in (4) and (5) correspond to m approaching zero from

the positive and negative halves of the real axis,
respectively.
Finally, a gauge invariant formulation allows us to map

the corresponding Maxwell terms of the two theories to
each other in the A0 ¼ a0 ¼ 0 gauges.
While not a hindrance to the analysis and operator maps

presented in this Letter, the theories studied here are known
to be anomalous (as seen from the half-quantized induced
Chern-Simons term in the effective actions). This can be
amended in the special case of flat spacetimes by adding a
second fermionic species to both sides of the duality with a
large parity violating mass term. As discussed in [8] the
more general solution valid in curved spaces involves the
addition of gravitational Chern-Simons terms to both sides
of the duality.
Several additional issues also require further study. The

constraint B ¼ −b restricts the construction to ν ¼ 1
2
. Can

this analysis be generalized to other filling fractions?
Following the tell-tale signs noted earlier, is there a possible
connection between the gauge-invariant framework
described here and bosonization techniques employed in
the coupled-wire constructions? Finally, the present
results—reliant as they are on the complex structure
provided by the flat geometry of the plane—are valid in
flat spacetimes. The starting point of the present Letter (7)
needs to augmented by auxiliary fields to account for zero
modes of A in spaces of nontrivial topologies. The duality
studied here was formulated in spaces with nontrivial
geometries admitting magnetic fluxes in [8]. Can the
present operator map be generalized to such geometries?
We hope future work will clarify these issues.

The author is deeply grateful to Parameswaran Nair for
numerous conversations about this work.
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