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We investigate spectral statistics in spatially extended, chaotic many-body quantum systems with a
conserved charge. We compute the spectral form factor KðtÞ analytically for a minimal Floquet circuit
model that has a Uð1Þ symmetry encoded via spin-1=2 degrees of freedom. Averaging over an ensemble of
realizations, we relate KðtÞ to a partition function for the spins, given by a Trotterization of the spin-1=2
Heisenberg ferromagnet. Using Bethe ansatz techniques, we extract the “Thouless time” tTh demarcating
the extent of random matrix behavior, and find scaling behavior governed by diffusion for KðtÞ at t≲ tTh.
We also report numerical results for KðtÞ in a generic Floquet spin model, which are consistent with
these analytic predictions.
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Introduction.—Statistical mechanics is a fundamental
tool in understanding condensed matter systems, allowing
for their description in terms of a few state variables, rather
than thermodynamically many degrees of freedom (d.o.f.).
For quantum or classical systems in equilibrium with their
environment, thermodynamics arises naturally from the
exchange of conserved quantities with a thermal reservoir.
For generic isolated systems, thermalization is not guar-
anteed, but rather must emerge dynamically. In recent
years, there has been substantial theoretical [1] and exper-
imental effort [2,3] to understand how many-body quantum
systems in isolation equilibrate under their own dynamics
to reproduce the familiar results of statistical mechanics.
The eigenstate thermalization hypothesis (ETH) [4–6]
provides a universal mechanism for establishing ergodicity
of isolated quantum systems: in its simplest formulation,
it is based on the convergence of the expectation values of
local observables in nearby energy eigenstates when the
thermodynamic limit is considered. Indeed, this assumption
is enough to recover thermal behavior from the long-time
dynamics of many-body quantum systems. The notion of
quantum ergodicity associated with ETH is intertwined
with random matrix theory (RMT): first, quantum chaotic
systems are characterized by an RMT eigenvalue distribu-
tion [7,8]; second, their eigenfunctions can be understood
as random vectors [4,5,9,10]. One consequence is that
quantum thermalization is always associated with level
repulsion between energy eigenvalues. In practice, this
spectral rigidity has often been used as an efficient means to
pinpoint quantum ergodicity breaking [11–15].
The validity and possible regimes of violation of

ETH have been scrutinized in different types of chaotic

systems [16–21]; however, numerical tests of ETH
are challenging as they require the diagonalization of
Hamiltonians whose size grows exponentially with the
number of microscopic d.o.f. [17,22–24]. An obvious
limitation is that while RMT captures several aspects of
quantum chaos, replacing the microscopic time evolution
by a random matrix overlooks a key facet of the former,
namely, locality.
Recent efforts have endeavored to establish and improve

upon minimal models of chaotic many body quantum
systems starting from RMT, and enforcing locality via
random local unitary gates to form “circuits” [21,25–33].
Such models generally display quantum chaos, as charac-
terized by entanglement entropy, the decay of local
observables, and out-of-time-ordered correlation functions
[25–27]. By considering Floquet random circuits, it has
been possible to derive analytically RMT spectral rigidity,
in the limit of large local Hilbert space dimension [27,28] or
at fine-tuned solvable points [32,34]. More precisely, these
works demonstrated that RMT behavior only appears for
eigenvalue separations small on the scale of the inverse
of the Thouless time, tTh, named in analogy with single-
particle disordered conductors [35,36]. The value of tTh
depends on the linear system size L and characterizes the
timescale for the onset of quantum chaos. It remains an
open question to understand which mechanisms control the
scaling of tTh with L.
In this work, we investigate the effect of a local

conserved quantity Q̂ on the behavior of tTh and, more
generally, on the spectral properties of the evolution
operator Ŵ of a Floquet system. In particular, we consider
the two-point spectral form factor (SFF) KðtÞ, defined as
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KðtÞ≡ XD
m;n¼1

he{ðθm−θnÞti ¼ hjTr½ŴðtÞ�j2i: ð1Þ

Here fθmg are the eigenphases of Ŵ, D is the Hilbert space
dimension, ŴðtÞ indicates the tth power of Ŵ, and h…i
denotes the average over an ensemble of statistically similar
systems. The SFF is the Fourier transform of the two-point
correlation function of eigenphases. For uncorrelated
eigenphases, KðtÞ ¼ D, while for random matrices belong-
ing to the circular unitary ensemble (CUE), KCUEðtÞ ¼ jtj
until the Heisenberg time tHeis ¼ D, after which
KCUEðtÞ ¼ D. The linear ramp is thus a fingerprint of
level repulsion. For spatially extended one-dimensional
(1D) systems without a conserved density [28,37] KðtÞ ≃
tL=ξðtÞ for t ≪ tTh: the system can be seen as partitioned into
L=ξðtÞ chaotic blocks, with a length ξðtÞ that grows with t.
RMT behavior is recovered for t≳ tTh with ξðt ¼ tThÞ ∼ L.
In the presence of a conserved quantity with diffusive
transport, it is natural to expect tTh ∼ L2=D, where D is the
diffusion constant. The idea that the timescale L2=D
controls the onset of RMT spectral correlations was
proposed on a heuristic basis in Ref. [33], with support
from a variety of estimates and numerical studies. Here we
establish this result in an exact treatment of a minimal
model. We also set out the scaling behavior of KðtÞ in the
time interval 1 ≪ t≲ tTh and show that this holds in a
computational study.
To probe KðtÞ we build on a Floquet circuit model

introduced in Ref. [27], consisting of a chain with q-state
“spins” at each site. The model has a time-evolution
operator Ŵ constructed from unitary gates that act on
neighboring pairs of sites. Gates are randomly selected in
space but repeated periodically in time. Using a diagram-
matic method to average over the individual matrices [38],
to leading order at large q, one finds KðtÞ ¼ KCUEðtÞ for
any t ≠ 0, so that tTh → 0 as q → ∞. In the following, we
formulate and characterize an extension of this model that
hosts a Uð1Þ symmetry corresponding to a local, conserved
operator Q̂ that commutes with Ŵ. In this way, the limit
q → ∞ has a twofold convenience: first, it allows con-
trolled diagrammatic calculations; second, it washes out
any effect on KðtÞ not due to Q̂.
Circuit model.—The minimal model is a Floquet random

unitary circuit (FRUC) defined on a chain of L sites with
local Hilbert spaceHloc ≡ Cq ⊗ C2—the tensor product of
a q-dimensional color and a spin 1=2. The former facilitates
Haar averaging [27,28,30], and we encode a Uð1Þ sym-
metry in the latter, following Ref. [30], corresponding (in
standard notation) to conservation of Q̂ ¼ Ŝz ¼ 1

2

P
L
j¼1 σ̂

z
j.

The single-period—or Floquet—evolution operator Ŵ ≡
Ŵ2 · Ŵ1 is a depth-two circuit comprised of local two-site
gates: assuming even L, the two layers correspond, respec-
tively, to odd and even bonds, with Ŵ1 ¼ Û1;2 ⊗ Û3;4 ⊗ …

and Ŵ2 ¼ Û2;3 ⊗ Û4;5 ⊗ …ÛL;1. We require that each
Ûj;jþ1 preserves the local magnetization Szj;jþ1 ¼
1
2
ðσ̂zj þ σ̂zjþ1Þ [29,30]. Thus, Ûj;jþ1 is a 4q2 × 4q2 block

diagonal matrix, acting as a q2 × q2 matrix in each of the ↑↑
and ↓↓ subspaces, and as a 2q2 × 2q2 matrix in the ↑↓, ↓↑
subspace, with all three blocks independently drawn Haar
random unitaries.
To characterize spectral correlations in this quantum

circuit, we compute the SFF (1). Since ½Ŵ; Ŝz� ¼ 0, Ŵ is
block diagonal, and levels from different Ŝz sectors do not
repel. Thus, we define

Kðt; sÞ≡ hTr
s
½ŴðtÞ�Tr

s
½Ŵ†ðtÞ�i; ð2Þ

where s indicates restriction to the subspace Ŝz ¼ S ¼ Ls
[39] and h� � �i denotes Haar averaging.
Effective spin-1=2 model.—The ensemble averaging in

Eq. (2) maps Kðt; sÞ to the partition function of a
Trotterized Heisenberg ferromagnet. Evaluating this aver-
age amounts to generating all diagrams [27] by pairing
unitaries Ûj;jþ1 with their complex conjugates Û†

j;jþ1 at
each bond [40]. As q → ∞, the leading contributions come
from t diagrams, each of which has an identical “cyclical”
pairing at all sites [27]. These diagrams can be expressed
algebraically as (see Ref. [40] for details)

lim
q→∞

Kðt; sÞ ¼ jtjTr
s
½M̂t�; ð3Þ

where the factor of jtj comes from there being t such
leading diagrams. The trace over the effective spin-1=2
evolution operator M̂ accounts for the sum over the color
and spin d.o.f. in a given leading diagram. Like Ŵ, M̂≡
M̂2 · M̂1 consists of two layers: M̂1 ¼ T̂ 1;2 ⊗ T̂3;4 ⊗ …
and M̂2 ¼ T̂ 2;3 ⊗ T̂ 4;5 ⊗ …. M̂ is Hermitian, owing to
contraction of a unitary and its conjugate, and is invariant
under a shift by two sites due to ensemble averaging.
The matrix T̂ j;j0 acts only on sites j, j0 as

T̂ j;j0 ¼
1

2
ð1̂j;j0 þ P̂j;j0 Þ; ð4Þ

where P̂j;j0 ¼ 1
2
ð1̂j;j0 þ σ⃗j · σ⃗j0 Þ is the “swap operator.” We

note that M̂ describes a discrete-time symmetric simple
exclusion process (SSEP) for a classical lattice gas [41].
Although our original FRUC featured a Uð1Þ symmetry,
after Haar averaging and taking q → ∞, Kðt; sÞ exhibits an
enlarged SUð2Þ invariance in the remaining spin-1=2
variables; we believe this is specific to the large-q limit.
Additionally, as we clarify below, M̂ belongs to a family
of commuting transfer matrices, unveiling an emergent
integrability, and the possibility of computing Kðt; sÞ
exactly [42].
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This model leads to a Thouless time which scales
diffusively. To see this, note T̂ j;jþ1 ≡ 1̂j;jþ1 − Ĥj;jþ1, where

Ĥj;jþ1 ¼ − 1
4
ðσ⃗j · σ⃗jþ1 − 1̂j;jþ1Þ describes the spin-1=2

Heisenberg ferromagnet. Thus, we can interpret Tr½M̂t�
in Eq. (3) as a Trotterization of the partition function at
inverse temperature β ¼ t, i.e., Trs½M̂t� ≃ Trs½e−tHXXX �, with
HXXX ¼ P

j Ĥj;jþ1. Hence, the behavior of Kðt; sÞ at late
times reflects the low-temperature properties of the
Heisenberg ferromagnet, HXXX, which has (Lþ 1)-fold
degenerate ground states with vanishing energy. Each Sz

sector has a unique ground state, jSi≡ ðŜ−ÞN↓ j↑…↑i with
Ŝ� ≡P

j σ̂
�
j and N↓ ¼ L=2 − S ¼ Lð1=2 − sÞ. Low-lying

excitations above each jSi are magnons, i.e., plane-wave
superpositions of spin flips

jS; ki ¼ 1ffiffiffiffi
L

p
XL
j¼1

e{jkσ̂−j jSþ 1i; k ¼ 2πp
L

; ð5Þ

characterized by a quadratic dispersion relation εðkÞ ∝ k2 at
small k. Expanding in t ≫ L2, one expects only the lowest
energy magnon contributes and

lim
q→∞

Kðt; sÞ ¼
t≫L2

jtjð1þ e−4π
2t=L2 þ � � �Þ: ð6Þ

This suggests diffusive scaling of the Thouless time,
tTh ∝ L2; a similar correspondence with HXXX was estab-
lished in Ref. [33] for random unitary circuits with a
conserved density, lending support for the generality of this
result. However, to investigate the regime 1 ≪ t ≪ L2, we
must consider states with extensive numbers of magnons,
and many-body effects.
Scaling form.—We define the function

ϕðt; sÞ ¼ − lim
L→∞

L−1 ln ½Kðt; sÞ=jtj�; ð7Þ

which can be computed exactly for any integer t, either by
solving an infinite set of coupled integral equations—i.e.,
the thermodynamic Bethe ansatz (TBA) [43,44]—or, per-
haps more efficiently, via the “quantum transfer matrix
method” [45,46], which requires the solution of an alge-
braic equation in 2jtj variables [40]. While the latter is
better suited to calculating KðtÞ at a particular time t,
the former affords analytic insight into behavior at large
times. Since the limit L → ∞ implies tHeis → ∞, we
expand Eq. (7) about large t using TBA,

ϕðt; sÞ ¼ −
Cffiffi
t

p þ 1

2ð2sþ 1Þtþ � � � ; ð8Þ

where the constant C ¼ ζð3=2Þ= ffiffiffiffiffiffi
4π

p
[ζðzÞ is the Riemann

Zeta function] and q → ∞ is taken implicitly. Ignoring the
Trotterized structure of M̂ and taking M̂ ∼ e−HXXX relates

Eq. (8) to the low-temperature expansion of the
specific heat close to the ferromagnetic ground state of
HXXX [47,48].
The form of Eq. (8) implies diffusive scaling even for

t ≪ DL2. From the behavior ϕðt; sÞ ∼ ðDtÞ−1=2 it is ap-
parent that the value of D is independent of s, a conse-
quence of the emergent SUð2Þ symmetry at q → ∞.
However, the scaling limit relevant for KðtÞ in the regime
1 ≪ t≲ tTh is distinct from that recovered from TBA (8):
the former requires t, L → ∞ with x≡ t=L2 fixed, while
the latter requires the thermodynamic limit L → ∞ at
fixed t. Nevertheless, these results suggest a scaling form

lim
t;L→∞

ln ½Kðt; sÞ=t� ¼ κðx; sÞ: ð9Þ

Despite the inherent integrability, exact calculation of
κðx; sÞ is a challenging task. Nevertheless, its asymptotic
behavior can be read off from Eqs. (6) and (8): for early
times (x ≪ 1) one inserts Eqs. (7) into (8); for late times
(x ≫ 1) one expands the log of the right side of Eq. (6).
Thus

κðx; sÞ ∼
x≪1

Cx−1=2 and κðx; sÞ ∼
x≫1

e−4π
2x: ð10Þ

By treating the magnons as noninteracting bosons, using
Tr½M̂t� ≈ Tr½e−tH�, we recover [40]

κðx; sÞ ¼ −
X
n≠0

ln ½1 − e−xDð2πnÞ2 �; ð11Þ

which precisely agrees with Eq. (10) if one uses the
diffusion constant D ¼ 1 associated with the true
dispersion (20) at small k. Although these predictions
are obtained for q → ∞, we expect their qualitative features
to be valid for generic chaotic many-body systems with
conserved charges.
Numerical simulation.—We now turn to numerical

simulation to test Eq. (9) in chaotic quantum systems at
finite q. At q ¼ 1, the FRUC considered above exhibits a
numerically small diffusion constant that makes it difficult
to avoid finite-size effects at the accessible values of L.
Instead, we use a model adapted from Ref. [29], defined by

Ŵ ¼ e−it4Ĥ4e−it3Ĥ3e−it2Ĥ2e−it1Ĥ1 ; ð12Þ

where

Ĥ1 ¼
X
j

ðJ1z σ̂zjσ̂zjþ1 þ h1j σ̂
z
jÞ;

Ĥ3 ¼
X
j

ðJ2z σ̂zjσ̂zjþ2 þ h2j σ̂
z
jÞ;

Ĥ2 ¼ Ĥ4 ¼ Jxy
X
j

ðσ̂xj σ̂xjþ1 þ σ̂yj σ̂
y
jþ1Þ; ð13Þ
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with periodic boundary conditions. We take J1z ¼
ð ffiffiffi

3
p þ 5Þ=6, J2z ¼

ffiffiffi
5

p
=2 and Jxy ¼ ð2 ffiffiffi

3
p þ 3Þ=7, with

h1;2n drawn independently from the uniform distribution
½−1.0; 1.0� for ensemble averaging. We choose t1 ¼ 0.4,
t2 ¼ 0.1, t3 ¼ 0.3, and t4 ¼ 0.2 to avoid time-reversal
symmetry around any instant in the period (we check that
nearest-neighbor level statistics are CUE). In contrast to a
recent study [49], we did not investigate KðtÞ at strong
disorder, as our concern is with the behavior of ergodic
systems.
We restrict to half-filling, and measure KðtÞ for sizes

L ¼ 12, 14, 16, each averaged over ≳104 disorder con-
figurations [40]. Figure 1 (lower panel) shows the general
behavior of KðtÞ in a system with a conserved charge, with
values much larger than RMT during an initial interval,
followed by a linear ramp regime in which KðtÞ ¼ jtj, and
finally a plateau for t ≥ tHeis. Figure 1 (upper panel) shows
scaling collapse of ln ½KðtÞ=t� versus x ¼ t=L2 for different
L, following Eq. (10), with a comparison to Eq. (11) withD
a fitting parameter, here taken to be 0.05.

Bethe ansatz solution.—We conclude by sketching the
analysis of Eq. (3) using Bethe ansatz. The computation
of Trs½M̂t� would be simplified by knowledge of the full
eigenspectrum of M̂. Following the coordinate Bethe
ansatz for HXXX [50,51], one seeks multimagnon eigen-
functions, i.e., plane waves, along with a scattering matrix
describing the exchange of the excitations’ momenta.
However, this approach suffers from technical complica-
tions due to the circuit construction of M̂. A more direct
approach is instead based on the equivalent algebraicBethe
ansatz formulation [52]. Thus, we introduce the R matrix

R̂a;bðλÞ ¼
λ

λþ 2{
1̂ab þ

2{
λþ 2{

P̂ab; ð14Þ

which acts on spins-1=2 labeled a and b. We next introduce
the transfer matrix, which acts jointly on the L physical
spins and an auxiliary spin a:

T̂ ðλÞ≡ R̂1;aðλ − ξ1ÞR̂2;aðλ − ξ2Þ…R̂L;aðλ − ξLÞ; ð15Þ

where the rapidity λ and inhomogeneities ξ’s are arbitrary
complex numbers. Note that the subscripts in Eq. (15) label
Hilbert spaces, as is customary in the Bethe-ansatz liter-
ature (see also Fig. 4 in Ref. [40]). Schematically, λ
parametrizes the quasimomentum kðλÞ ¼ arccotðλ=2Þ ∈
ð−π=2; π=2Þ carried by the auxiliary particle while travers-
ing the chain. Alternatively, in the auxiliary space, T̂ ðλÞ can
be written as a 2 × 2 matrix of operators acting on the
physical spins,

T̂ ðλÞ ¼
�
ÂðλÞ B̂ðλÞ
ĈðλÞ D̂ðλÞ

�
: ð16Þ

This construction is useful because the Rmatrix in Eq. (14)
satisfies the Yang-Baxter relation, implying a set of
algebraic relations between the coefficients in Eq. (16),
computed at the same inhomogeneities [53]; in particular,
setting F̂ðλÞ≡ ÂðλÞþD̂ðλÞ, one has ½F̂ðλÞ;F̂ðλ0Þ�¼0, ∀ λ,
λ0. The presence of a one-parameter family of commuting
quantities establishes integrability for any choice of fξjg,
but only particular choices give rise to interesting local
models. For instance, the isotropic Heisenberg spin chain is
recovered for the homogeneous case, ξj ¼ {=2. However,
the brick-wall geometry relevant to M̂ is realized via
ξj ¼ {ð1þ ð−1ÞjÞ, from which it follows [40] that

M̂ ¼ lim
δ→{

F̂ ð{ − δÞ−1F̂ð{þ δÞ; ð17Þ

where the limit is needed to account for the noninvertibility
of T̂ j;j0 in Eq. (4). The common eigenstates of the conserved
quantities F̂ðλÞ (and thereby M̂) can be obtained via
algebraic properties, from which one can interpret B̂ðλÞ

FIG. 1. Behavior of KðtÞ. Upper figure (main panel): lnKðtÞ=t
vs t=L2. The scaling collapse of data for L ¼ 14, 16, and 18
indicates that the Thouless time tTh is controlled by diffusion;
small deviations for L ¼ 12 are presumably a finite-size effect.
The full line is a fit to the scaling function (11) with D ¼ 0.05.
Inset: same data vs t for comparison. Lower panel: KðtÞ for
L ¼ 12; the small system size narrows the relative extent of the
ramp regime KðtÞ ¼ t, highlighting the short-time, pre-RMT
behavior.
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as an effective magnon creation operator on the vacuum
jSi, which decreases Ŝz by one. Thus M̂ has eigenstates

M̂jλ1;…; λNiS ¼ e−
P

j
εðλjÞjλ1;…; λNi; ð18Þ

where jλ1;…; λNiS ¼ B̂ðλ1Þ…B̂ðλNÞjSi. The integer N
encodes the magnetization eigenvalue via Ŝzjλ1;…; λNiS ¼
ðS − NÞjλ1;…; λNi. Because of interactions, the parameters
λ1;…; λN are not free, but satisfy

�
λj þ 2{

λj − 2{

�
L=2

¼
YN
j0¼1
j0≠j

�
λj − λj0 þ 2{

λj − λj0 − 2{

�
; ð19Þ

the solution of which provides the full spectrum of M̂.
The dispersion relation in Eq. (18) is given by

εðλÞ≡ −2 ln cos kðλÞ: ð20Þ

At small k, a quadratic dispersion relation is recovered, as is
expected since the discrepancies between M̂t and e−tHXXX

become irrelevant at long wavelengths. Although Eqs. (18),
(19) simplify substantially the evaluation of Eq. (3), the
main bottleneck remains the exponential growth in L of the
Hilbert space dimension. However, in the thermodynamic
limit L, S → ∞ with s ¼ S=L fixed, the solutions of
Eq. (19) acquire a simple structure [40], and the function
ϕðt; sÞ in Eq. (7) can be computed analogously to thermo-
dynamic quantities in integrable spin chains.
Discussion.—We have presented analytical and numeri-

cal evidence showing the significance of the Thouless time
tTh ¼ L2=D for spectral correlations in systems with a
conserved charge. These results are consistent with a
scaling form KðtÞ ∼ jtj exp ½κðt=L2Þ�. We believe this form
to be generic in describing the onset of chaos in quantum
systems with a conserved quantity. We also provide a
form (11) of the scaling function κ (9) by neglecting the
interactions between magnons in our FRUC, which is in
good agreement with our numerical simulations. The
question of the exactness and universality of Eq. (11) is
an interesting topic for future study. Another interesting
perspective for future work is the study of systems
supporting non-Abelian symmetries, where the interplay
of different conserved quantities can give rise to anomalous
transport [54–56].
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Note added.—Recently, related numerical results were
presented in Ref. [49] for the scaling of tTh with L−2 in
a Hamiltonian (rather than Floquet) model.
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