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We consider a class of quantum lattice models in 1þ 1 dimensions represented as local quantum circuits
that enjoy a particular dual-unitarity property. In essence, this property ensures that both the evolution in
time and that in space are given in terms of unitary transfer matrices. We show that for this class of circuits,
generically nonintegrable, one can compute explicitly all dynamical correlations of local observables.
Our result is exact, nonpertubative, and holds for any dimension d of the local Hilbert space. In the minimal
case of qubits (d ¼ 2) we also present a classification of all dual-unitary circuits which allows us to single
out a number of distinct classes for the behavior of the dynamical correlations. We find noninteracting
classes, where all correlations are preserved, the ergodic and mixing one, where all correlations decay, and,
interestingly, also classes that are both interacting and nonergodic.
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Spatiotemporal correlation functions of local observables
provide the most fundamental and useful physical descrip-
tion of locally interacting classical or quantum many-body
systems [1,2]. They characterize ergodic properties [3], as
well as basic transport coefficients of many-body systems,
such as conductivities, Drude weights, and kinematic vis-
cosities [4]. Moreover, correlation functions are directly
measurable quantities, e.g., via x-ray diffraction or neutron
scattering in solid-state materials [4], or via quantum optical
detection techniques in cold atomic gases [5].
In spite of their extraordinary relevance, an exact non-

perturbative calculation of correlation functions is generi-
cally feasible only in free (Gaussian) theories, or for certain
types of completely integrable models [6]. To date, no
specific example of a strongly coupled, nonintegrable, local
quantum many-body system with accessible correlation
functions is known.
The situation is somewhat different for classical dynami-

cal systems with few degrees of freedom, where some
exactly tractable examples have been found, for instance,
Arnold’s cat map, Baker’s map, and dispersing billiards
[3,7–9]. In classical dynamical systems the decay of
correlation functions leads to a rigorous criterion of
ergodicity and dynamical mixing [7]. Moreover, the pres-
ence of tractable systems allows for rigorous results on
quantum eigenstate ergodicity [10–12]. On the contrary,
ergodic theory of quantum many-body systems is currently
in its early infancy. In particular, in locally interacting
systems it is exceptionally challenging to separate relax-
ation (mixing, or scrambling) mechanisms from the mere
decaying time correlations of local operators. The former
requires dynamical complexity and thus the absence of
integrability [13–15], while the latter occurs even in
quasifree systems [14,16,17].

Here we take the first step toward a rigorous ergodic
theory for quantum many-body systems by identifying a
class of quantum lattice models in one spatial dimension
with explicitly accessible spatiotemporal correlation func-
tions for arbitrary pairs of ultralocal observables. These
models are generically nonintegrable and can be formulated
in terms of local quantum circuits with local gates exhibit-
ing a particular dual-unitarity property. Specifically, they
are unitary and remain unitary under a reshuffling of their
indices, ensuring that the full quantum circuit defines
unitary evolutions in both time and space directions.
This class of models includes both the nonintegrable
self-dual kicked Ising model (SDKI), where the aforemen-
tioned feature recently enabled us to find exact results on
spectral correlations and entanglement entropy dynamics
[18,19], and some integrable Floquet systems [20–22].
More specifically, we consider quantum systems defined

on a periodic chain of 2L sites, where each site is equipped
with a d-dimensional local Hilbert space H1 ¼ Cd with a
basis fjii; i ¼ 1; 2…dg; the Hilbert space of the system is
thenH2L ¼ H⊗2L

1 . The timeevolution is discrete and local. In
particular, each time step is divided into twohalves. In the first
half the system is evolved by the transfer matrix Ue ¼ U⊗L,
whereU ∈ EndðH1 ⊗ H1Þ is the local gate and encodes the
physical properties of the system. In the second half, instead,
the system is evolved by Uo ¼ T2LUeT †

2L, where Tlji1i ⊗
ji2i � � � jili≡ ji2i ⊗ ji3i � � � jili ⊗ ji1i is an l-periodic
translation by one site. This means that the transfer matrix
for an entire time step is given by

U ¼ UoUe ¼ T2LU⊗LT†
2LU

⊗L: ð1Þ
Note that from the definition (1) it immediately follows thatU
is invariant under two-site shifts UT2

2L ¼ T2
2LU.
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Before continuing, we note that the systems under
examination admit a convenient diagrammatic representa-
tion. One depicts operators as boxes with a number of
incoming and outgoing legs corresponding to the number
of local sites they act on. Each leg (or wire) carries a Hilbert
spaceH1. For instance, operators acting on a single site are
represented as a line with a bullet •, while the local gate and
its Hermitian conjugate are represented as

ð2Þ

We stress that, even if we use a symmetric symbol forU, we
assume no symmetry under reflection (left-to-right flip) and
time reversal (up-to-down flip).
This diagrammatic representation allows us to depict the

trace of the propagator for t steps as a partition function of a
certain vertex model:

ð3Þ

Here the transfer matrix U corresponds to two consecutive
rows, while the dual transfer matrix Ũ ∈ EndðH⊗2t

1 Þ
corresponds to two consecutive columns, and the
boundary conditions in both directions are periodic.
As it is clear from the diagram, the dual transfer matrix
reads as

Ũ ¼ T 2tŨ⊗tT†
2tŨ

⊗t; ð4Þ

where we introduced the dual local gate Ũ by means of the
following reshuffling:

hkj ⊗ hljŨjii ⊗ jji ¼ hjj ⊗ hljUjii ⊗ jki: ð5Þ

The dual gate defines the evolution in a circuit where the
roles of time and space have been swapped.
In this Letter we consider quantum circuits with unitary

local gates U such that Ũ is also unitary. Namely, we
require [23]

ð6Þ

ð7Þ

We call “dual unitary” local gates fulfilling both Eqs. (6)
and (7) (these conditions immediately imply that U and Ũ
are also unitary). In the following we show that dual-
unitary gates provide a remarkable testing ground for
studying dynamical correlations in many-body quantum
systems. They allow us to classify a number of qualitatively
different physical behaviors [29].
Here we consider dynamical correlation functions of

local operators in the general time-translation invariant,
tracial, or infinite temperature state. These quantities are
defined as follows:

Dαβðx; y; tÞ≡ 1

d2L
tr½aαxU−taβyUt�; ð8Þ

where x; y ∈ 1
2
Z2L, t ∈ N [the space-time lattice of the

circuit is drawn in Eq. (3)] and faαxgd2−1α¼0 denotes a basis of
the space of local operators at site x, i.e., a basis of
EndðH1Þ. We assume that aα are Hilbert-Schmidt ortho-
normal tr½ðaαÞ†aβ� ¼ dδα;β and choose a0 ¼ 1, so all other
aα are traceless, i.e., tr½aα� ¼ 0 for α ≠ 0.
The expression (8) is represented diagrammatically as

ð9Þ

where, again, boundary conditions in both directions are
periodic. Since U−ta0xUt ¼ a0x, we have for all α ≠ 0,

D00ðx; y; tÞ ¼ 1;

D0αðx; y; tÞ ¼ Dα0ðx; y; tÞ ¼ 0: ð10Þ

Moreover, using the two-site shift invariance of U, we
find
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Dαβðx; y; tÞ ¼
�
Cαβ
− ðx − y; tÞ 2y even

Cαβ
þ ðx − y; tÞ 2y odd;

ð11Þ

where we set Cαβ
� ðx;tÞ≡Dαβ(xþð1∓ 1Þ=4;ð1∓ 1Þ=4; t).

We are now in a position to derive the main result of
this Letter: an exact closed-form expression for Eq. (8).
The calculation can be subdivided into two main steps,
summarized in the following two properties.
Property 1.—If U is dual unitary, the dynamical

correlations for t ≤ L=2 are nonzero only on the edges
of a light cone spreading at speed 1:

Cαβ
ν ðx;tÞ¼ δx;νtC

αβ
ν ðνt; tÞ; ν¼�; α;β≠ 0: ð12Þ

Before proceeding with the rigorous proof we note
that Property 1 has a clear physical interpretation.
Because of the dual unitarity of the dynamics, cor-
relations have a causal cone in space, together with
that in time. Since they can only propagate along
the intersection of the two light cones, we must
have x ¼ �t.
Proof.—The most intuitive way to prove this property

is by using the diagrammatic representation (2) and (9).
Let us consider the case ν ¼ þ, while the procedure for
ν ¼ − is analogous.
By repeated use of the unitarity property (6) we can

simplify the circuit (9) out of the light cone spreading at
speed 1 from aβ0. This is a simple consequence of the
causal structure of the time evolution. Pictorially, we
have

ð13Þ

At this point, it is convenient to distinguish three cases:
(i) x ¼ t, (ii) x ¼ t − 1

2
, and (iii) x ≠ t − 1

2
; t. Let us start

by considering case (iii): using the unitarity of Ũ, i.e.,
Eq. (7), we have

ð14Þ

From this picture it is clear that (7) can be telescoped
until the operator aβ is encountered. Namely,

ð15Þ

where the central loop represents the trace of aβ fac-
toring out. Using that for β ≠ 0 the operators aβ are
traceless, we then conclude that the correlation vanishes.
Consider now case (ii). Using (7) we find

ð16Þ

PHYSICAL REVIEW LETTERS 123, 210601 (2019)

210601-3



Here the loop giving tr½aα� factors out, so we again
conclude that the whole expression vanishes. We then
showed that the only remaining possibility is case (i). This
concludes the proof. ▪
Property 2.—The light cone correlations Cαβ

þ ðt; tÞ and
Cαβ
− ð−t; tÞ are given by

Cαβ
ν ðνt; tÞ ¼ 1

d
tr½M2t

ν ðaβÞaα�; ð17Þ

where we introduced the linear maps over EndðCdÞ:

ð18Þ

ð19Þ

tri½A� denote partial traces over the ith site (i ¼ 1, 2).
Proof.—We again prove the property for Cαβ

þ ðt; tÞ, using
the diagrammatic representation. A completely analogous
reasoning applies for Cαβ

− ð−t; tÞ.
By repeated use of the unitarity property (6), we can

reduce Cαβ
þ ðt; tÞ to the following form:

ð20Þ

Using the definition (18) we see that (20) is precisely the
diagrammatic representation of (17). ▪
Properties 1 and 2 have a very powerful consequence: all

dynamical correlations of local operators in dual-unitary
quantum circuits are determined by the two linear single-
qudit channels M�. These maps are trace preserving,
completely positive, and unital (meaning that they map the
identity operator to itself). Moreover, as it is apparent from
their definition, they are completely determined by a single

d2 × d2 unitary matrix (U in our case). Maps with these
properties are known in the literature as unistochastic maps
[31–33]. These maps are generically nondiagonalizable;
however, they are contractive. Namely, the eigenvalues
fλν;γgd2−1γ¼0 of Mν lie on the unit disk, and those that are on
the unit circle have coinciding algebraic and geometric
multiplicity [23]. This means that the dynamical correla-
tions take the following general form:

Cαβ
ν ðx; tÞ ¼ δνx;t

Xd2−1
γ¼1

cαβν;γðλν;γÞ2t; α; β ≠ 0; ð21Þ

where jλν;γj ≤ 1, and for eigenvalues corresponding to

nontrivial Jordan blocks, the “constant” cαβν;γ is a polynomial
in t. Note that since aβ are orthogonal, we excluded the
trivial eigenvalues λ�;0 ¼ 1 corresponding to the identity
operator.
This gives a systematic way to classify dual-unitary

circuits based on the increasing level of ergodicity
of ultralocal observables.
(i) Noninteracting behavior: All 2ðd2 − 1Þ nontrivial

eigenvalues λν;γ are equal to 1, meaning that all dynamical
correlations remain constant.
(ii) Nonergodic (and generically interacting and non-

integrable) behavior: There are n, 1 ≤ n < 2ðd2 − 1Þ, non-
trivial eigenvalues λν;γ equal to 1, meaning that some
dynamical correlations remain constant.
(iii) Ergodic but nonmixing behavior: All nontrivial

eigenvalues λν;γ are different from 1, but there exists at
least one eigenvalue with unit modulus. In this case, all
time averaged dynamical correlations vanish at large
times, reproducing the infinite-temperature state value.
(iv) Ergodic and mixing behavior: All nontrivial eigen-

values are within unit disk, jλν;γj < 1. In this case, all time
dynamical correlations vanish at large times, reproducing
the infinite-temperature state value even without time
averaging.
An example of (i) is the SWAP gate Ujii ⊗ jji ¼

jji ⊗ jii, which is clearly self-dual, i.e., U ¼ Ũ. Note
that, since dual-unitary gates are generically not parity
invariant, we can have chiral cases where the number of
nondecaying modes (i.e., with λν;γ ¼ eiθ) propagating to
the left and to the right is different.
We point out that Eq. (21) gives direct access to time

correlations among extensive operators of the form
Aα
ν ≡P

x∈ZL
aαxþðν−1Þ=4. Specifically, one finds

1

Ld2L
tr½Aα

νU−tAβ
μUt� ¼ δν;μ

Xd2−1
γ¼1

cαβν;γðλν;γÞ2t: ð22Þ

These correlations are able to distinguish dynamical mixing
from the mere decaying local correlators. Indeed, even if all
dynamical correlations (21) (at fixed distance x) vanish in
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the infinite time limit, the correlation (22) vanishes only if
the system is ergodic and mixing (all nontrivial eigenvalues
are within unit disk). In particular, if the mode aαx is
conserved [i.e., MνðaαÞ ¼ aα], Aα

ν is a proper conserved
charge of the system. Note that, since we considered modes
localized on a single site, these conservation laws are of
single-body form; i.e., they do not couple different sites.
Finally, we remark that our classification here only con-
cerns ergodicity of ultralocal observables and their exten-
sive sums. For instance, circuits in (iv) may in principle still
exhibit nonergodic or nonmixing behavior for nonlocal
operators or local operators with a larger support.
The proposed classification can be explicitly carried out for

d ¼ 2. Indeed, in this minimal case it is possible to para-
metrize all dual-unitary local gates [23]. The result reads as

U ¼ eiϕðuþ ⊗ u−ÞV½J�ðv− ⊗ vþÞ; ð23Þ
where ϕ; J ∈ R [34], u�, v� ∈ SUð2Þ, and

V½J� ¼ exp

�
−i
�
π

4
σx ⊗ σx þ π

4
σy ⊗ σy þ Jσz ⊗ σz

��
:

ð24Þ
Quantum circuits with local gates of the form (23) include
both integrable [20] and nonintegrable cases. For instance,
UXXZ ¼ V½J� is a full parameter line of the integrable
trotterized XXZ chain [21,22] and

USDKI ¼ ðe−ihσzeiðπ=4Þσx ⊗ eiðπ=4ÞσxÞṼ½0�ðe−ihσz ⊗ 1Þ;
ð25Þ

with Ṽ½0�¼ðe−iðπ=4Þσy⊗e−iðπ=4ÞσyÞV½0�ðeiðπ=4Þσy⊗eiðπ=4ÞσyÞ,
is a quantum circuit representation [23] (see also Ref. [30]) of
the nonintegrable self-dual kicked Ising chain studied in
Refs. [18,19]. In other words, for d ¼ 2, integrable [20]
and dual-unitary quantum circuits form two distinct but
overlapping sets.
Plugging the form (23) into the definitions (18) and (19),

and writing the corresponding matrices in the Pauli basis
fa0; a1; a2; a3g ¼ f1; σx; σy; σzg, we find

M� ¼
�
1 0

0 R½u��

�
M½J�

�
1 0

0 R½v��

�
: ð26Þ

Here, to lighten the notation, we denoted the matrices
associated with M� with the same symbols. Moreover,
we denoted by R½w� the 3 × 3 adjoint representation
of w ∈ SUð2Þ, and, finally, we introduced M½J�≡
diagð1; sinð2JÞ; sinð2JÞ; 1Þ, the matrix of the map associ-
ated with the gate V½J�.
Since the spectrum is invariant under similarity trans-

formations, the eigenvalues of M� depend only on J and
on the products v�u� ∈ SUð2Þ, thus, in principle, on four
real parameters. The matrix M½J�, however, is invariant
under rotations around the z axis, so the eigenvalues ofM�
depend on three real parameters only (J is a common

parameter). Analyzing the spectra of M� as functions of
the parameters, we identify all four types of ergodic
behavior [23]. For instance, for the SDKI chain the spectra
ofMþ andM− coincide and are given by f1; cosð2hÞ; 0g.
This means that, for generic h, the model is in the ergodic
and mixing class, while at the integrable point h ¼ 0, it is in
the class (ii). At this special point, the y magnetizations on
the integer and half-odd integer sublattices are conserved.
Instead, in the case of the trotterized XXZ chain the
matrices M� coincide with M½J�. Therefore, they are
always in the class (ii) except for J ¼ π=4, when they
correspond to the SWAP gate and are in the noninteracting
class (i). For J ≠ π=4, the charges associated to the
conserved modes are z magnetizations on the integer
and half-odd integer sublattices.
The results presented in this Letter admit several gen-

eralizations and extensions. First of all, we note that the
proofs of Properties 1 and 2 do not rely on translational
invariance either in time or in space. This means that (17)
directly generalizes to cases where some inhomogeneity
or randomness is introduced either in space or in time
[35–37]: one simply needs to replaceM2t

�ðaÞ in (17) with a
product of 2t different operator maps, each one determined
by a different local gate depending on the space-time point.
Moreover, our treatment can be straightforwardly repeated
to find correlation functions of local observables with larger
support. This will, for instance, allow one to find exactly
solvable circuits with more complex, “many-body,” local
conservation laws. Such circuits are currently attracting
considerable attention, see, e.g., Refs. [38,39], because they
are regarded as toy models for generic closed systems.
Another very interesting direction is to approach generic
quantum circuits by a perturbative expansion around
ergodic and mixing dual-unitary ones. Indeed, the fact
that in the dual-unitary point the dynamics have a sort of
exponential space-time clustering hints that an expansion
might have a finite radius of convergence. Finally, a
construction very similar to the one presented here can
be carried out for higher dimensional quantum circuits,
where, instead of on chains, one considers local sites
disposed on hypercubes of any dimension. Requiring dual
unitarity in all directions again constrains the correlations
to the edges of a light cone, and allows one to express them
in terms of unistochastic maps.
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