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We demonstrate diabatic two-qubit gates with Pauli error rates down to 4.3ð2Þ × 10−3 in as fast as 18 ns
using frequency-tunable superconducting qubits. This is achievedby synchronizing the entangling parameters
with minima in the leakage channel. The synchronization shows a landscape in gate parameter space that
agrees with model predictions and facilitates robust tune-up. We test both iSWAP-like and CPHASE gates with
cross-entropy benchmarking. The presented approach can be extended to multibody operations as well.
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One of the key goals in quantum computing is developing
gates that are fast and precise. For superconducting qubits,
recent advances have led to gate speeds that are up to three
orders of magnitude faster than typical coherence times,
enabling pilot experiments in simulation and error correc-
tion [1–6]. However, while fast gates minimize error from
decoherence, they are prone to imprecision in quantum
control and can cause leakage out of the computational
subspace. Superconducting qubits are by nature multilevel
systems whose higher level states can become populated.
For weakly nonlinear qubits such as the transmon [7], this
leakage is found to be long lived [8] and can grow to
significant levels when running long algorithms, necessitat-
ing mitigation techniques for quantum error correction [9].
The need to minimize leakage has led to the development of
adiabatic gates [10] as well as the introduction of resonators
to limit interactions between qubits [11,12], both of which
increase gate duration and decoherence error. The demon-
stration of a fast gate that balances low control error and low
leakage remains an open challenge.
Here, we report diabatic gates that have minimal leakage.

By synchronizing the entangling parameters, leakage
channel, and the weakly frequency-dependent interqubit
coupling, one can achieve high fidelity gates close to the
speed limit set by the interaction strength. We demonstrate
our approach with iSWAP-like and CPHASE gates in a
frequency-tunable, fixed-coupling architecture, and find
Pauli error rates down to 4.3ð2Þ × 10−3, corresponding
to average gate fidelities up to 0.9966(2), for gate times as
short as 1.2 times the speed limit. The presented approach
can be useful for multibody operations as well.
We use frequency-tunable transmon qubits that are

coupled through a fixed capacitance [Fig. 1(a)]. When

tuning their transition frequencies near resonance popula-
tions can exchange, and the nonlinearity gives rise to a
conditional phase accumulation as described (up to single-
qubit phases) by the photon-conserving unitary

FIG. 1. (a) Circuit diagram of two transmon qubits coupled
through a small capacitance, giving rise to a frequency-dependent
coupling strength. (b) Schematic representation of the iSWAP gate.
(1) Qubits at rest (idle), separated by a large detuning. (2) A’s
qubits are rapidly detuned to the interaction frequency, qubit B’s
ω10 transition sweeps by A’s ω21 transition, potentially incurring
leakage from j11i to j20i. (3) Qubits at the interaction frequency
undergo an iSWAP operation; both qubits’ j2i states hybridize.
Resonant Rabi oscillations occur between j10i and j01i while
weaker off-resonant Rabi oscillations occur between j11i and
jψbi. (c) The frequency dependence of the coupling g makes the
synchronization of the exchange between j01i and j10i and
preservation of the occupation of j11i occur at specific frequen-
cies. Red lines denote the swap-and-back condition between j11i
and jψbi, blue denotes a full swap between j01i and j10i.

PHYSICAL REVIEW LETTERS 123, 210501 (2019)

0031-9007=19=123(21)=210501(6) 210501-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.210501&domain=pdf&date_stamp=2019-11-19
https://doi.org/10.1103/PhysRevLett.123.210501
https://doi.org/10.1103/PhysRevLett.123.210501
https://doi.org/10.1103/PhysRevLett.123.210501
https://doi.org/10.1103/PhysRevLett.123.210501


U ¼

0
BBB@

1 0 0 0

0 cos θ −i sin θ 0

0 −i sin θ cos θ 0

0 0 0 e−iϕ

1
CCCA; ð1Þ

with θ as the swap angle and ϕ as the conditional phase.
However, when implementing such a gate, computational
levels are unavoidably swept past or brought near reso-
nance with higher levels, leading to leakage out of the
computational subspace [Fig. 1(b)]. A complete description
therefore involves the full one- and two-excitation sub-
space: the computational states j01i; j10i; j11i as well as
the noncomputational states j02i and j20i.
The key notionbehindour approach isminimizing thegate

error by synchronizing the minima of the leakage and
residual swap population, as suggested in Ref. [13]. For
an ideal rectangular pulse of duration th, qubits are instantly
placed on resonance and the states j10i and j01iwill undergo
Rabi oscillations with P01ðthÞ ¼ sin2ðgthÞ, and a complete
population swap occurs for th ¼ π=ð2gÞ. Deviation from a
full swap is given by ϵswap ¼ 1 − P01. However, at the same
time, j11iwill interactwith j20i and j02i. The states j20i and
j02i are in resonance and the three-level, two-excitation
subspace is split into the “bright” subspace spanned by the
states j11i and jψbi ¼ ðj20i þ j02iÞ= ffiffiffi

2
p

, and the “dark
state” jψdi ¼ ðj20i − j02iÞ= ffiffiffi

2
p

. The latter is decoupled
from the other two states and remains unpopulated. The
system undergoes off-resonant Rabi oscillations between the
states j11i and jψbi, which are detuned from each other by
the qubit nonlinearity η. In this ideal picture, the leakage error
is simply given by the probability to occupy the noncomputa-
tional state jψbi at the end of the gate execution,

ϵleak¼jψbðthÞj2¼
16g2

η2þ16g2
sin2

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2þ16g2

q
th

�
; ð2Þ

which is nulled for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ 16g2

p
th ¼ 2πn, where n is an

integer. Aligning the Rabi oscillations in the swap and
leakage channels is the key behind the synchronization
protocol.
To execute the iSWAP gate, one therefore needs to align a

zero of the function ϵleakðthÞ with the maximum of P01ðthÞ.
This implies that the interqubit coupling g and the qubit
nonlinearity η must satisfy the relation

g ¼ η

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − 1

p ; ð3Þ

and the synchronization is possible only for discrete values
of g: the gate has a “spectrum.” At first glance, the problem
seems insurmountable with a fixed-coupling architecture.
Furthermore, it is unclear if the above will hold for realistic
pulses that are unavoidably rounded and broadened in
experimental systems. In particular, a finite ramp speed

could lead to an imperfect Landau-Zener transition through
the j11i–j20i avoided level crossing, causing additional
leakage not captured by Eq. (2) that can appear in the dark
state as well.
The key to performing the synchronization lies in the

architecture itself. We explore this experimentally using a
pair of transmon qubits having maximum f10 frequencies
of 6.28 and 6.16 GHz and nearly constant nonlinearities
η=2π of 223 and 240 MHz. The coupling capacitor has a
capacitance of ∼0.45fF, giving a coupling strength of
g=2π ¼ 16.2 MHz at f10 ¼ 6 GHz, and is frequency-
dependent following g ¼ ωCc=2C.
It is this frequency dependence that gives rise to spectra

of synchronized swaps between j01i and j10i and swaps
and back between j11i and jψbi as a function of interaction
frequency and hold time, shown in Fig. 1(c). These lines
cross at several points that lie within the typical range
of operation for superconducting qubits (4–7 GHz), indi-
cating full synchronization between the swap and leakage
channels.
Here, we focus on realizing this synchronization for

n ¼ 4, whose hold duration is shortest within the accessible
range [green circle in Fig. 1(c)]. The control pulses are
shown in Fig. 2(a). We simultaneously apply rounded
trapezoidal flux pulses [14,15] on the frequency control
lines to steer the qubits towards the interaction frequency.
We include a small overshoot Δi ∼ 5 MHz (inset), which
acts as fine-tuning parameter to account for pulse non-
idealities, as well as the dressed eigenbasis due to small
residual coupling before and after the duration of the gate.
The overshoot comes from a complete swap requiring a
rotation of the Bloch vector associated with the fj01i, j10ig
subspace by angle π, analogous to the Larmor precession of
the spin in a magnetic field. When the qubits are idle there
is a large z component of the magnetic field due to the
frequency detuning, and a small x component due to g. As a
result, the initial Bloch vector mð0Þ is slightly tilted
towards the x axis. At perfect resonance, the detuning is
zero and the effective magnetic field points along the x axis,
i.e., not perpendicular tomð0Þ. Hence the Bloch vector will
precess around a cone and will never point in the −mð0Þ
direction, making a complete swap impossible. To enable a
complete swap one needs to add a small z field (overshoot).
The energy level diagram during the gate is plotted in

Fig. 2(b), showing the swap channel, comprised of the
hybridization of j01i and j10i, and leakage channel,
comprised of j11i, j02i, and j20i.
We visualize the synchronization by varying the hold

time and measuring the probabilities in the swap and
leakage channels [Fig. 2(c)]. We initialize the qubits in
either j01i or j11i and measure the unwanted probabilities
ϵswap and ϵleak, respectively. The leakage error (solid red
line) shows dips every 4 ns, reaching a minimum of
6 × 10−4 at 15.1 ns. The swap error (solid blue line) shows
a single minimum of 2 × 10−4 at 15.3 ns, overlapping with
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the fourth minimum of the leakage error. Data are not
corrected for measurement error. The dashed curves are
theory predictions. We note that the minima of the leakage
channel dip down to different values—a consequence of the
qubits having dissimilar nonlinearities.
The data in Fig. 2(c) show that the synchronization of

leakage and swap error is achievable in an experimental
setting, where control pulses are unavoidably rounded due
to filtering and other distortions. As predicted in Fig. 1(c),
synchronization occurs at n ¼ 4. We find a small condi-
tional phase of ϕ ¼ 0.3–0.4 rad that accumulates when
qubit frequencies are steered towards and away from each
other (not shown). Methods to control this phase will be
published separately [14]. Based on the measured proba-
bilities of the swap and leakage error channels, this gate
shows the potential to achieve an error rate below 10−3.
We explore the parameter range in Fig. 3, where the swap

and leakage error are measured over interaction frequency,
hold time, and overshoot. Model results are on the left, with

experimental results on the right. Data vs interaction
frequency and hold time show a relatively large frequency
range over which synchronization can be achieved, see the
white area in Figs. 3(a)–3(b). This arises from the leakage
error being only very weakly dependent on interaction
frequency, evidenced by near-vertical blue lines (e.g.,
where leakage error is minimal), and a small dependence
of the swap error on interaction frequency, consistent with
Fig. 1(c). The blue lines indicate regions of low leakage but
high swap error, consistent with Fig. 2(c). Hold times are
longer compared to Fig. 3 due to the use of different
filtering. In Figs. 3(c)–3(d) we see that the optimal value of
the overshoot is chosen from a small range that is only
weakly dependent on interaction frequency. We find a
stronger tilt in the data in Fig. 3(d), compared to Fig. 3(c),
which we attribute to minor distortions of the pulse
waveform: the tilt is on the order of 10 MHz, while qubits
are steered over a range of 1 GHz. Finally, Figs. 3(e)–3(f)
show that synchronization depends critically on both the
overshoot frequency and hold time.
The robustness of both the hold time and overshoot

frequency to the interaction frequency in Fig. 3 provides a
clear map for tuning up and optimizing gate parameters.
After choosing an interaction frequency, the optimal hold
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time and overshoot frequency can be clearly picked out
from one-dimensional scans. We note that the inclusion of a
small overshoot is critical to optimizing the synchroniza-
tion, and is robust to the choice of interaction frequency and
hold time.
Having found a good correspondence between theory

and experiment in Fig. 3, we now turn to benchmarking the
fidelity of the gate. We use cross-entropy benchmarking
(XEB) [16,17], which can quantify the performance of a
wider range of unitaries than Clifford-based randomized
benchmarking. We follow the approach in Refs. [16–18].
Here, we use two transmon qubits having maximum
frequencies of 6.84 and 6.04 GHz, nonlinearities of 212
and 219 MHz, and g=2π ¼ 17.1 MHz at the interaction
frequency of 5.89 GHz. Qubit T1 values lie around 20 μs.
As the ideal interaction frequency lies slightly above the
maximum frequency of the lower qubit, we bring up an
iSWAP-like gate with a total duration of 18 ns, with
incomplete swap angle θ ¼ 1.42 rad, see Fig. 4(a).

We can also implement a CPHASE gate [19], having a
duration of 28 ns, that makes use of the interaction between
j11i and j20i by choosing an overshoot close to the
nonlinearity, intentionally swapping to j20i and then back
[see Fig. 4(b)], underlining the generality of our approach.
XEB is a characterization tool based on sampling. Here,

many cycles of gates are applied, with each cycle consisting
of a layer of random single-qubit gates and the two-qubit
gate, with a final round of random single-qubit gates
appended at the end [inset Fig. 4(c)]. Single-qubit gates
are chosen from the set of π=2 rotations around eight axes
in the Bloch sphere representation:�X,�Y, and�ðX � YÞ
[14]. By comparing the measured state probabilities with
the ideal ones we can define a sequence fidelity based on
relative cross-entropy differences between probability dis-
tributions [16],

α ¼ Hinc;exp −Hmeas;exp

Hinc;exp −Hexp
: ð4Þ

Here, the cross entropy between two probability distribu-
tions fpig and fqig is H ¼ −

P
i pi logðqiÞ, and Hinc;exp is

the cross-entropy between the incoherent (uniform) and
expected (ideal) distributions,Hmeas;exp is the cross-entropy
between the measured and expected distributions, andHexp

is the self-entropy of the expected distribution. We sample
over 100 different random circuits consisting of 500 cycles
each. The decay in α with cycles reflects the accumulation
of gate error, as in randomized benchmarking.
The sequence fidelity as a function of cycle number m is

shown in Fig. 4(c) for both gates, decaying according to
α ¼ Apm þ B (solid lines), where state preparation and
measurement errors are absorbed in A and B. We find a
Pauli error per cycle of 6.5ð3Þ × 10−3 for the iSWAP-like
gate and 8ð3Þ × 10−3 for the CPHASE gate, where this
quantity contains contributions from two single-qubit gates
in addition to the two-qubit gate. We quantify the phases θ
and ϕ of the unitary [Eq. (1)] using unitary tomography
[14] and fine-tuning using the cross-entropy data to
optimize the fidelity, finding θ ¼ 1.42 rad, ϕ ¼ 0.45 rad
for iSWAP-like and θ ¼ 0.01 rad, ϕ ¼ 3.28 rad for the
CPHASE gate.
In order to separate out contributions to gate error, we

have performed additional experiments, measuring the
leakage and the purity P [8,14,20–22], as well as perform-
ing single-qubit XEB. In Fig. 4(d) we plot the square root
of the rescaled purity [14,21], which can be understood as
the generalized Bloch vector length. It is therefore a
measure of incoherent error, and is insensitive to coherent
error. We find cycle purity errors of 5.5ð1Þ × 10−3

and 7.4ð2Þ × 10−3 for the iSWAP-like and CPHASE gate.
In Fig. 4(d) we also plot the sum of all higher-level state
populations accumulated during XEB in Fig. 4(c). Fitting
to ϵleak ¼ ðp0 − p∞Þe−Γm þ p∞, with Γ ¼ γup þ γdown the
sum of leakage and decay rates, respectively, p0 the initial
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p
(square root of rescaled purity [14]) and accumulation of
leakage during XEB. Single-qubit XEB is in the Supplemental
Material [14]. We extract Pauli gate errors of 4.3ð2Þ × 10−3 for
the iSWAP-like and 5.8ð2Þ × 10−3 for the CPHASE gates, with
contributions from control and decoherence of 1.8ð4Þ × 10−3 and
4.1ð4Þ × 10−3, respectively.
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population, and p∞ ¼ γup=Γ [8], we find leakage rates,
expressed as Pauli errors of 2.43ð4Þ × 10−3 and 1.75ð4Þ ×
10−3 for the iSWAP-like and CPHASE gate. The leaked
population accumulates incoherently due to the interleaved
random single-qubit gates, and therefore manifests as an
incoherent error contribution [8], in both the purity
and XEB benchmarking error results. Error is given by
rXEB − rpurity for coherent error, and by rpurity − rleak for
decoherence, with r denoting the error extracted from the
specific measurement [14].
The data in Fig. 4 indicate that the cycle errors for both

gates are dominated by decoherence and leakage, that the
leakage rate is around 2 × 10−3 per cycle, and that control
errors are around 1 × 10−3 per cycle. We attribute the
leakage per cycle being higher than observed for a single
gate application in Fig. 2 to frequency control pulse
distortions in long sequences. Separating out the single-
qubit gate contribution we find Pauli errors of 4.3ð2Þ ×
10−3 for the iSWAP-like and 5.8ð2Þ × 10−3 for the CPHASE

gates, see the Supplemental Material [14] for the single-
qubit data and gate error budget. These Pauli errors
correspond to average gate fidelities of 0.9966(2) for the
iSWAP-like and 0.9954(2) for the CPHASE gates. High
fidelity iSWAP gates are also relevant for fermionic quantum
simulations [23]. The fidelities are stable for over an hour
[14], and comparewell with those previously established for
superconducting qubits: for CZ, average gate fidelities in the
range to 0.990–0.994 having durations around 40 ns were
reported [24,25], and iSWAP gates in 180 ns have been shown
with fidelities up to 0.98 [26]. Separate methods can be used
for entangling gates in architectures with tunable cou-
pling [27].
The demonstration of high fidelity iSWAP-like and

CPHASE gates shows the viability of synchronization pro-
tocols to construct fast diabatic gates that have low leakage
in a frequency-tunable qubit architecture. Using the native
frequency dependencies in the system, this approach can be
extended to simultaneously synchronizing multiple entan-
glement and leakage channels, enabling the construction of
high-fidelity multiqubit gates.
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