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Active particles such as swimming bacteria or self-propelled colloids spontaneously self-organize into
large-scale dynamic structures. The emergence of these collective states from the motility pattern of the
individual particles, typically a random walk, is yet to be probed in a well-defined synthetic system. Here,
we report the experimental realization of tunable colloidal motion that reproduces run-and-tumble and
Lévy trajectories. We utilize the Quincke effect to achieve controlled sequences of repeated particle runs
and random reorientations. We find that a population of these random walkers exhibit behaviors
reminiscent of bacterial suspensions such as dynamic clusters and mesoscale turbulentlike flows.
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Microswimmers such as motile bacteria and active col-
loids individually perform random walks but collectively
move in a much more complex fashion [1–3]. E. coli, for
example, run-and-tumbles by executing persistent straight
runs interrupted by random changes in the direction of
motion and in a dense suspension generates turbulentlike
flows [4–6]. Diverse biomotility strategies have inspired
great interest in the engineering of artificial self-propelled
particles that mimic the elaborate locomotion patterns and
collective behaviors of their biological counterparts [7–11].
Most available experimental designs of artificial colloidal
microswimmers perform active Brownian motion [12–21],
where the reorientation in the directed motion is driven by
the rotational diffusion of the swimmer. This results in slow
and continuous directional changes, in contrast to the sudden
turning events characteristic of the run-and-tumble bacteria.
Efforts to emulate the kinetics of the bacterial run-and-
tumble motions [22,23] have been unable to achieve truly
random reorientation events. Only recently, reorientation
disentangled from rotational diffusion has been accom-
plished by using viscoelastic fluid as a suspending medium
[24], but control over the walk characteristics was limited.
Here we report the experimental realization of a motile

colloid inspired by the Quincke roller [25–27] that per-
forms finely tunable, diverse random walks such as run-
and-tumble or Lévy walks. This Quincke random walker
enables the experimental study of active fluids emulating
bacterial suspensions under well-defined and controllable
conditions, e.g., particle density, speed (i.e., activity), and
locomotion type. A population of the Quincke random
walkers display collective dynamics reminiscent of bacte-
rial suspensions such as self-organization into swarms and
various dynamic clusters.
The colloid “run” is powered by Quincke rotation, i.e., the

spontaneous spinning of a particle polarized in a uniform

direct current (dc) electric field [28] [see Fig. 1(a) and
Supplemental Material [29] for a detailed description of the
phenomenon]. If the sphere is on a surface, it rolls steadily
following a straight trajectory. The Quincke rollers have
stirred a lot of interest since they were discovered to undergo
collective directed motion [25,26,39,40]. Our strategy to
introduce a “tumble” in the colloid trajectory exploits a
unique feature of the Quincke instability: the degeneracy of
the rotation axis in the plane perpendicular to the applied
electric field (and parallel to the rolling surface). A sequence
of on-off-on electric field causes the sphere to roll-stop-turn;
the turn is due to the Quincke instability picking a new axis
of rotation. One caveat though is that the charging and
discharging of the particle occurs by conduction and require
finite time. The induced dipole P evolves as [41]

∂P
∂t ¼ Ω × P − τ−1MWðP − χeEÞ; ð1Þ

where Ω is the rotation rate, and χe is the electric suscep-
tibility of the particle. The characteristic timescale for
polarization relaxation is the Maxwell-Wagner time τMW ¼
ðεp þ 2εsÞ=ðσp þ 2σsÞ, which depends solely on the fluid
and particle conductivities and permittivities σ and ε.
Random reorientation after each run is only ensured if the
sphere is completely discharged before the field is turned on.
Incomplete depolarization acts as a memory and correlates
subsequent runs. Thus, the relaxation nature of the polari-
zation adds another functionality to the Quincke walks: a
variable degree of run correlation. Furthermore, since the
Maxwell-Wagner “memory” timescale depends solely on the
fluid and particle electric properties, it can be tuned by
adding surfactants to the oil [27].
Experimentally, we apply external electric field by

designing a sequence of electric pulses with duration τR
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and spaced in time by τT to dielectric (polystyrene) micron-
sized spheres (diameter 40 μm) settled onto the bottom
electrode of a chamber filled with oil (hexadecaneþ AOT,
τMW ∼ 2 ms) [Fig. 1(a)] [27]. As predicted, various tra-
jectories are realized depending on the degree of depolari-
zation, i.e., τT=τMW [Figs. 1(b)–1(d)]. If τT ≫ τMW, particle
polarization relaxes completely, and full randomization
of the consecutive run directions is accomplished. As the
particle trajectory and tumbling angle distribution in
Fig. 1(b) show, the run and turn phases are independent,
and the particle undergoes an unbiased and uncorrelated
random walk. The time-averaged mean-squared displace-
ment of the individual trajectory in Fig. 1(b) and also the
ensemble average of multiple realizations (Fig. S3 in the
Supplemental Material [29]) show excellent quantitative
agreement with the theoretical predictions (summarized in
the Supplemental Material [29]). The transition from a
ballistic to diffusive motion occurs at time t ∼ τR, and the
long-time behavior (t ≫ τR) follows V2τ2Rt=ðτR þ τTÞ.
Typical run velocities V ∼ 1 mm=s result in an effective
diffusion coefficient on the order of a few mm2=s, quite
large for a microswimmer. As τT approaches τMW, the
colloid motion starts to exhibit some local directional bias
manifested by the emergence of a peak at a tumbling angle
of zero; see Figs. 1(c) and 1(d). Eventually, the random
walk vanishes completely, and the particle undergoes a
persistent directed motion [Fig. 1(d)]. The trajectory is
curved instead of a straight line because particle density is
not uniform. The transition from the uncorrelated random
walk to directed motion is illustrated in Fig. 1(e) by the

persistence index α ¼ hcosðΔθÞi, which quantifies the
average change in the direction of motion after a run. Δθ
is the angle between two consecutive run segments, and h:i is
the average over all reorientation events. The sharp transition
around τT=τMW ∼ 2 highlights the fact that complete depo-
larization and repolarization each occurring on a timescale
∼τMW are necessary for the randomization of direction of
motion. Thus, in our design for a random walker, any resting
time τT sufficiently larger than τMW guarantees full ran-
domization. At τT=τMW ∼ 2.9, the correlated run of the
particle results in a persistence index of α ¼ 0.345, close to
the run-and-tumble locomotion of E. coli [42].
The average run velocity is independent of the frequency

of the electric field signal and is equal to the velocity with
which the particle cruises at time-independent dc field with
the same magnitude [Fig. 1(f)]. Therefore, run velocity can
be controlled by the amplitude of the applied signal. Closer
inspection of the particle motion shows that the particle
follows the applied electric signal during the run and rest
phases [Fig. 1(g) and Supplemental Material Fig. S2 [29]).
Run-and-tumble and Lévy walks.—We now proceed to

construct more complex locomotion patterns. In the run-
and-tumble walk, the run-times are exponentially distrib-
uted ψR ¼ 1=τ̄e−t=τ̄, where τ̄ is the mean value for the run
times [43]. For a Lévy walk with resting periods [44],
ψR ¼ γtγ0t

−ð1þγÞHðt − t0Þ, where τ̄ ¼ t0γ=ðγ − 1Þ [43],
where H is the Heaviside function, and t0 is the lower
cutoff value for the run times. The power 1 < γ < 2

controls the degree of anomalous superdiffusion manifested

MW

MW
MW MW
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FIG. 1. (a) Quincke random walker: In a uniform direct current electric field E, free charges brought by conduction accumulate at the
particle surface. For E values above the threshold for Quincke rotation, a spontaneous symmetry breaking of the charge distribution
gives rise to a net torque, and the sphere rolls about a randomly chosen axis in the plane perpendicular to the applied field direction. If a
square-wave electric field is applied with a period between the pulses longer than the time needed for the sphere to depolarize (Maxwell-
Wagner time), the sphere executes a random walk. (b)–(d) Quincke walker trajectories at different τT=τMW ratios, with τR ¼ 0.15 s.
Particle stops are marked with red circles. Insets: (Left) tumbling angle distribution, (right) log-log plot of time-averaged experimental
(symbol) and theoretical (solid line) mean-squared displacement (crossover marked by the vertical dashed line at t ¼ τR). (e) persistence
index α for different τT=τMW ratios. (f) Run velocity depends solely on the amplitude of the applied electric field. Symbols: Measured
velocity at different amplitude and frequencies 1=ðτR þ τTÞ of the applied pulsed signal. Solid lines: Velocity measured in dc fields.
(g) Particle velocity for 1 s duration of the pulsed signal τT=τMW ¼ 20, τR ¼ 0.15 s. E ¼ 1.66 MV=m.
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at long times. In both cases, the turning time τT and run
velocity V are constant. We randomly draw run times τR
from ψR [Figs. 2(a) and 2(f)] and encode these times as
pulse durations in the electric signal (sample signals are
shown in Fig. S4 in the Supplemental Material [29]).
Sample trajectories of the Quincke roller performing

a run-and-tumble motion and Lévy walk are shown in
Figs. 2(b) and 2(g) (see also Video S1 in the Supplemental
Material [29]). The measured time-averaged mean-squared
displacement of an individual trajectory [Fig. 2(c)] and the
ensemble average of multiple realizations (Fig. S5 in the
Supplemental Material [29]) display a transition from
the initial ballistic regime for times shorter than τ̄ to final
normal diffusion with a linear scaling with time in the case
of run-and-tumble. The experimental results are in excel-
lent agreement with the theoretical prediction [43]. The
mean-squared displacement for the Lévy walk [Fig. 2(h);
see also Fig. S6 in the Supplemental Material [29] ] exhibits
superdiffusion consistent with the theoretical scaling of t3−γ

[Eq. (S9) in the Supplemental Mateiral [29] ]. The exper-
imental velocity autocorrelation function VACF shown in
Fig. 2(d) decays sharply in the case of run-and-tumble
motion, in agreement with the theoretical predictions
[Eq. (S10) in the Supplemental Material [29] ]. For the
Lévy walk, VACF exhibits a tail [Fig. 2(i)], as predicted
theoretically [Eq. (S11) in the Supplemental Material [29] ]
and is poorly fitted by an exponential curve. This, plus
the fact that particle’s displacement follows the desired

distribution, corroborates that the walker undergoes a Lévy
walk. The run length [Figs. 2(e) and 2(j)] linearly depends
on the corresponding run times, which confirms that the
walker runs at almost constant speed.
Collective dynamics.—A population of Quincke random

walkers exhibit various collective dynamics illustrated in
Fig. 3 for the case of a simple walk. The collective states
emerge from any initial random state, reaching steady state
typically within a minute. At a given particle density,
depending upon the run-time τR and the degree of depo-
larization τT=τMW (memory), the Quincke colloids self-
organize into different dynamical phases at (statistically)
steady state with distinct statistical properties, e.g., the
spatial two-point correlation function S2, velocity autocor-
relation function Cvv, and the polar order parameter ΦO
[see Figs. 4(a)–4(c) and Supplemental Material [29] for
cluster identification criteria and definitions of cluster
statistics]. The classical run-only Quincke rollers [25]
correspond to τT=τMW ¼ 0.
If the colloid run directions are correlated due to

significant memory effect (τT=τMW < 2), particles form
swarms similar to those observed in the dc limit [25,26]
(Video S2 in the Supplemental Material [29]). The fast
decay of S2 in Fig. 4(a) and the corresponding characteristic
length scale LS2 of a few particle diameter d (LS2 defined as
the length where S2 crosses the horizontal line correspond-
ing to the r → ∞ limit) indicate lack of connectivity or
large-scale clustering of the particles. However, swarms

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIG. 2. Top row: Run and tumble. Bottom row: Lévy walk. (a)–(f) Distribution of run-time τR drawn from an exponential and
power-law probability density function. (b),(g) Trajectory of the Quincke walker performing a run-and-tumble and Lévy walk.
(c),(h) Time-averaged mean-squared displacement (in m2). Symbols, experiment; solid line, theory; vertical dashed line marks τ̄.
(d),(i) Normalized velocity autocorrelation function. Symbols, experiment; solid line, theoretical exponential decay; dashed line,
theoretical power-law decay. Inset: Same in log-log scale plot. (e),(j) Run length vs the corresponding run-time τR. Symbols,
experiment; solid line, linear fit showing a constant run velocity of V ¼ 1.73 mm=s for run-and-tumble and V ¼ 0.84 m=s for Lévy
walk. E ¼ 1.83 MV=m for run-and-tumble and E ¼ 1.5 MV=m for Lévy walks. For both run-and-tumble and Lévy walk:
τ̄ ¼ 0.075 s, τT=τMW ¼ 20. γ ¼ 1.7 for Lévy walk.
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show long-range velocity correlations and high polar
ordering; see Figs. 4(b) and 4(c). Increasing τR, while
keeping τT=τMW below 2, leads to the emergence of stable
rotating clusters (Video S3 in the Supplemental Material
[29]), with (periodic) long-range spatial pair and velocity
correlations. These structures likely arise from the complex
interplay of hydrodynamic and electrostatic interactions
between the Quincke walkers. While swarms are attributed
to pair-aligning interactions [25,26,45], a recent model
suggests that a competing antialigning interaction can lead
to rotating clusters [46]. As the memory effect fades,
τT=τMW > 2, the stationary rotating clusters transition into
mobile elongated clusters composed of a smaller number
of particles. At small to intermediate values of τR, particles
form stable large polar clusters (Video S4 in the
Supplemental Material [29]) with long-range velocity
and orientational order [shown in Figs. 4(a)–4(c)], which
cruise over the whole domain without significant exchange
of particles. Upon further increase of τT and τR, the giant

polar clusters break up by exchanging outermost particles,
which start performing independent random walks. This
results in a more continuous spectrum of cluster size
distribution at steady state, with large clusters being
orientationally decorrelated; see Figs. 4(c) and 4(d). The
resulting disordered clusters are highly dynamic: They
continuously evolve, deform, and break by exchanging
particles (Video S5 in the Supplemental Material [29]).
The cluster size distribution in Fig. 4(d) shows a kink

at large particle size n, which can be fit by PðnÞ∼
c1nb1e−n=nc1 þ c2nb2e−n=nc2 , whose scalings agree well
with dynamic clustering in bacterial suspension and dis-
crete particle simulations [47–49]. The particle number
fluctuations ΔN scale with the average particle numbers
hNi (in windows of different linear size) as ΔN ∼ hNia,
with exponent a ∼ 0.85 (see Supplemental Material
Fig. S7 [29]), larger than the one for fluctuations in thermal
equilibrium a ¼ 0.5. Furthermore, cluster mean velocity
increases with the size of the cluster and plateaus beyond

FIG. 3. (a) Collective states formed by Quincke random walkers with different run and turn times (τR, τT). Symbols indicate the
experimentally observed ⊲ static clusters, △ swarm (SW), ∘ rotating clusters (RC), □ polar clusters (PC), * disordered clusters (DC).
(b) Snapshots of the SW (τT=τMW ¼ 0.5, τR ¼ 4 ms), RC (τT=τMW ¼ 1.5, τR ¼ 5 ms), PC (τT=τMW ¼ 3, τR ¼ 8 ms), and DC
(τT=τMW ¼ 10, τR ¼ 40 ms) phases from the experiments. Scale bar is 1 mm. Velocity vectors are superimposed to the particles. Particle
area fraction and pulse amplitude are constant in all experiments and are equal to ϕ ≈ 0.15 and E ¼ 2.08 MV=m, respectively.

(a) (b) (c) (d) (e)

FIG. 4. (a) Angular-averaged normalized two-point correlation vs normalized radial distance r. Top inset: In 2D, showing the spatial
periodicity of rotating cluster. Bottom inset: Characteristic length of S2. Angular-averaged velocity autocorrelation vs normalized radial
distance. Top inset: In 2D, showing the periodicity of velocity correlation of rotating and polar clusters in space. Some degree of
anisotropy in the velocity autocorrelation of the polar cluster is due to insufficient number of clusters in the field of view. Bottom inset:
Characteristic length of Cvv. (c) Polar order parameter vs n, the number of particles in a cluster. Inset: Global order parameter; shaded
areas indicate polar ordering higher than 75% and lower than 15%. (d) Probability distribution of clusters with n number of particles.
(e) VACF of a disordered cluster with τR ¼ 100 ms evaluated at different run steps. Inset: Angular-averaged energy spectrum of
disordered clusters. Symbols denote different phases: □ polar cluster (PC) (τT=τMW ¼ 3, τR ¼ 8 ms), * disordered cluster (DC)
(τT=τMW ¼ 10, τR ¼ 40 ms), ▿ disordered cluster (τT=τMW ¼ 10, τR ¼ 100 ms), ⋆ disordered cluster (τT=τMW ¼ 10, τR ¼ 150 ms),
△ swarm (SW) (τT=τMW ¼ 1, τR ¼ 4 ms.
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certain cluster sizes (see Supplemental Material
Fig. S8 [29]), similar to Ref. [47]. The angular-averaged
velocity autocorrelation of disordered clusters in Fig. 4(e)
shows anticorrelation around r=d ≈ 10–20, which is a
signature for the formation of vortical structures similar
to those observed in different bacterial systems [50–54].
The corresponding energy spectrum calculated from the
velocity field of the particles shows scaling of −8=3 [see
also Fig. 4(e)], which is in agreement with mesoscopic
turbulence in bacterial suspension [53], discrete particle
simulations [55], and also in numerical simulations for
suspension of pushers in a Newtonian fluid [56]. The
quantitative similarity of the cluster and flow statistics of
bacterial and Quincke walker clusters may originate from a
unique feature of the Quincke random walkers: When the
field is on, they all run, and when the field is turned off,
they all stop. This de facto synchronization of the runs and
turns mimics the fact that in dense suspensions, bacteria
do not swim independently due to mechanical locking of
flagella [47,57].
In conclusion, the Quincke random walker provides a

well-defined experimental system to study active fluids
emulating bacterial suspensions. In this work, we only
focused on the effects of the simple walk and its character-
istics (run and turn times) on the collective dynamics at
moderate particle density. Exploration of the complete
phase space will likely uncover more complex collective
states. While we only investigated the constant speed
motility, the Quincke random walker can be easily pro-
grammed for runs with a general time-varying speed [58]
and locomotions with distributed waiting times featuring
anomalous subdiffusion. Our approach can also be used to
randomize the motion of other active particles powered by
the Quincke effect, such as the recently proposed helical
propeller [59] and use this microswimmer to explore self-
organization in three-dimensional suspensions. We envi-
sion the Quincke random walker as a new experimental
platform to explore active locomotion at the microscale and
a test bed for the abundant theoretical models of the
collective dynamics of active matter.
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