
 

Rashba Cavity QED: A Route Towards the Superradiant Quantum Phase Transition
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We develop a theory of cavity quantum electrodynamics for a 2D electron gas in the presence of Rashba
spin-orbit coupling and perpendicular static magnetic field, coupled to spatially nonuniform multimode
quantum cavity photon field. We demonstrate that the lowest polaritonic frequency of the full Hamiltonian
can vanish for realistic parameters, achieving the Dicke superradiant quantum phase transition. This
singular behavior originates from soft spin-flip transitions possessing a nonvanishing dipole moment at
nonzero wave vectors and can be viewed as a static paramagnetic instability.
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The Dicke model, describing an ensemble of identical
two-level systems (matter excitations) coupled to a single
bosonic (cavity photon) mode, is a prototypical model of
cavity quantum electrodynamics (QED) [1]. In the so-
called ultrastrong coupling regime [2,3], when the coupling
strength (Rabi frequency) becomes comparable to the
energy splitting of the two-level system and the photon
energy, the Dicke model was shown to exhibit the so-called
superradiant quantum phase transition (SQPT) toward a
ground state characterized by a finite static average of the
photon field [4,5]. The transition was observed [6] in a
driven-dissipative quantum simulator of the Dicke model
[7,8]; however, the drive effectively introduces a finite
temperature [9], so the ground state remains inaccessible.
Besides changing the transition critical exponents [9], this
irremediably spoils the low-temperature coherence proper-
ties of the superradiant phase, leaving no room [10] for
potential quantum applications [11].
To the best of our knowledge, the SQPT has never been

observed in a physical matter system coupled to the
electromagnetic field, although the ultrastrong coupling
regime has been reached in a two-dimensional electron gas
(2DEG) placed in a cavity and subject to a perpendicular
static magnetic field, so that the matter excitations were
represented by the cyclotron resonance [12]. Moreover, a
softening of the lowest polaritonic excitation has been
observed in this system [13]. Crucially, physical light-
matter systems can be described by the Dicke model only in
a restricted range of parameters, and the SQPT always lies
outside this range. Hence, various extensions of the Dicke
model were proposed. The central question is which
extensions are physical and how they modify the phase
transition. In extended models the SQPT is often prevented
by the so-called “no-go” theorems [14–23]. Proposals to
circumvent them include systems with magnetic-dipole
interactions due to the cavity magnetic fields [24] or its

circuit QED analog with an inductive coupling [11,25].
It has been shown for different physical systems that upon
a proper microscopic treatment, the mysterious SQPT
assumes the more familiar shape of a crystallization
[26], a ferroelectric [27,28] or excitonic insulator [29,30]
instability, with the Coulomb interaction playing a crucial
role. Moreover, the instability occurred at length scales
much shorter than the cavity size, thereby questioning the
very role of the transverse cavity field.
In this Letter, we present a model without Coulomb

interaction, still exhibiting a SQPT. We consider a 2DEG
with Rashba spin-orbit coupling, placed inside an optical
cavity, and subject to a perpendicular magnetic field B.
In the decoupled 2DEG, the Landau levels can cross at
certain values of B corresponding to dipole-allowed exci-
tations with zero energy. The presence of such intrinsic soft
excitations greatly enhances the effect of the coupling to
the transverse electromagnetic field. We develop a theory of
Rashba cavity QED for integer filling factors and show that
this coupling leads to further softening of the system and
the appearance of “superradiant” phases. Crucially, the
instability occurs at a finite wave vector of the cavity field.
Even though an effective model including one or few cavity
modes may also exhibit a SQPT, for its proper quantitative
description many high-energy modes must be included.
This instability is of a magnetostatic nature; the resulting
“superradiant” phase with a frozen evanescent field is a
remote relative of Condon domains of spontaneous mag-
netization [31–34]. Moreover, it turns out that this insta-
bility can also occur without the cavity: the coupling to the
free vacuum field appears sufficient.
The model.—Since the effective strength of the light-

matter coupling is enhanced ifmultiple copies of thematerial
system are present [35], we consider nQW identical quantum
wells, each hosting a 2DEG with the single-electron
Hamiltonian containing a Rashba coupling term [36],
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H2DEG ¼ 1

2m� ðpþ eA=cÞ2 þ α½σ × ðpþ eA=cÞ�z: ð1Þ

Here, p ¼ −ið∂x; ∂yÞ is the 2D in-plane electronmomentum
(we set ℏ ¼ 1), m� is the effective mass, σ ¼ ðσx; σy; σzÞ is
the vector of Pauli matrices, α is the Rashba spin-orbit
coupling constant, −e < 0 is the electron charge. Typically,
for some existing InSb samples [37],m� ≃ 0.02m0 (m0 being
the free electron mass), α ≃ 0.7 eVÅ. Finally, the vector
potential A ¼ Aext þAcav consists of two parts.
First, AextðrÞ ¼ ð−By; 0; 0Þ corresponds to the external

magnetic field B, applied perpendicularly to the 2DEG
plane (in the z direction). The resulting single-particle
spectrum consists of Landau levels (LLs) with energies

ϵη;s ¼ ωc

�
ηþ s

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ηγ2

q �
; ð2Þ

where η ¼ 0; 1; 2;… is the LL index, s ¼ �1 for η ≥ 1 and
s ¼ 1 for η ¼ 0 is what remains of the spin index, ωc ¼
eB=ðm�cÞ is the cyclotron frequency, and γ ≡ αm�lB with
lB ≡ ðeB=cÞ−1=2 being the magnetic length. In Fig. 1, we
show ϵη;s for parameters consistent with InSb [37]; the
spectrum exhibits crossings between LLs ðη1; sÞ and
ðη2;−sÞ satisfying the conditions [38] jη1 − η2j > 1 and

α2 ¼ η1 þ η2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4η1η2 þ 1

p
2ðm�lBÞ2

: ð3Þ

Levels with the same s never cross. Each LL has a
degeneracy LxLy=ð2πl2BÞ where LxLy is the sample area.
We assume to be at zero temperature, at a fixed electron
density ne, and at B corresponding to an integer filling
factor ν≡ 2πl2Bne. Indeed, the SQPT is associated with a
reconstruction of the nondegenerate ground state in a
gapped system. Lifting the ground state degeneracy at
fractional fillings represents a totally different problem.

The vector potential AcavðrÞ of the cavity field is defined
by the mode expansion, determined by the cavity shape.
For simplicity, we consider a perfect metallic cavity with
dimensions Lx ≫ Lz ≫ Ly, filled by a material with a
dielectric constant ε. Then, one can consider only resonator
modes with wave vectors q ¼ ðqx; 0; qzÞ, where qx is
continuous and qz ¼ πnz=Lz, nz ¼ 1; 2; 3;…. The corre-
sponding mode frequencies are ωcav

qx;nz ¼ ðc= ffiffiffi
ε

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2z

p
.

The cavity vector potential then reads [39,40]

AcavðrÞ ¼
X
qx;nz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

LxLyLzεωqnz

s
uy sin

nzπz
Lz

× ðaqx;nzeiqxx þ a†qx;nze
−iqxxÞ; ð4Þ

where a†qx;nz (aqx;nz) is the photon creation (annihilation)
operator and uy is the unit vector in the y direction. We
assume the whole 2DEG sample with nQW quantum wells
to be much thinner than Lz and placed at z ¼ Lz=2 (Fig. 1,
inset). Then, what enters Eq. (1), isAcavðz ¼ Lz=2Þ and the
modes with even nz are decoupled.
Polaritons and instability.—The SQPT is signaled by the

vanishing of the lowest polariton frequency. The polariton
modes—the excitations of the coupled 2DEG-cavity
system—can be found by several methods. For example,
similarly to Ref. [40] for the same problem without
spin-orbit coupling, one writes the 2DEG many-body
Hamiltonian in terms of approximately bosonic operators
for inter-LL excitations; then the full 2DEG and cavity
Hamiltonian becomes bilinear and is diagonalized by the
Bogoliubov transformation. Alternatively, one can write
the action for coupled electron and photon fields, integrate
out the electrons, and expand the resulting bosonic action
to the second order in Acav. Both (rather standard)
calculations are given in the Supplemental Material [41],
and their equivalence is checked explicitly.
As a result, the polariton frequencies are given by the

solution of the following equation:

c
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2q2x − εω2

q
coth

Lz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x − εω2=c2

p
2

¼ −Qyyðqx;ωÞ;
ð5Þ

where Qyyðqx;ωÞ is the susceptibility determining the
linear response jy ¼ QyyðδAy=cÞeiqxx−iωt of the 2D elec-
tron current density jy to a perturbing vector potential δA
on top of Aext included in the unperturbed system, A ¼
Aext þ δAeiqxx−iωt. The susceptibility consists of two con-
tributions, the diamagnetic one and the sum over all inter-
LL transitions in all quantum wells,

Qyyðqx;ωÞ ¼
nQWnee2

m�

�
1 −

ωc

ν

X
l≤ν<l0

ωLL
l0l½gl

0l
qx �2

ðωLL
l0lÞ2 − ω2

�
: ð6Þ

FIG. 1. LL energies ϵη;s [Eq. (2)] versus B for α ¼ 0.7 eVÅ
and m� ¼ 0.02m0. The blue (red) curves correspond to s ¼ þ1
(s ¼ −1). The black dots mark the crossings [Eq. (3)]. The inset
shows the system geometry.
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Here, the LL indices ðη; sÞ≡ l are combined into a single
label, ordered according to the LL energies ϵl, Eq. (2), so
that LLs with l ≤ ν are filled, and those with l > ν are
empty. The transition energy ωLL

l0l ≡ ϵl0 − ϵl, and the
reduced coupling constants gl

0l
qx (dipole matrix elements)

are defined as

gl
0l

qx ¼ −
ffiffiffi
2

p
γðsin θl0 cos θlΘη

η0−1 − cos θl0 sin θlΘ
η−1
η0 Þ

þ sin θl0 sin θl
� ffiffiffiffiffiffiffiffiffiffiffi

η − 1
p

Θη−2
η0−1 −

ffiffiffi
η

p
Θη

η0−1

�

þ cos θl0 cos θl
� ffiffiffi

η
p

Θη−1
η0 −

ffiffiffiffiffiffiffiffiffiffiffi
ηþ 1

p
Θηþ1

η0

�
; ð7Þ

where tan θl ¼ ½−1þ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ηγ2

p
�=ð ffiffiffiffiffi

8η
p

γÞ, and the over-
lap function Θn1

n2 containing the qx dependence is given by

Θn1
n2 ¼

ffiffiffiffiffiffi
m!

M!

r
e−ξ=2ξðM−mÞ=2LðM−mÞ

m ðξÞSn2−n1 ; ð8Þ

with LðM−mÞ
m ðξÞ the generalized Laguerre polynomial of

ξ≡ l2Bq
2
x=2, S ¼ sgn½qxðn2 − n1Þ�, m ¼ minfn1; n2g, and

M ¼ maxfn1; n2g. Since at qx ¼ 0 we have Θn1
n2 ¼ δn1;n2 ,

the reduced coupling constants gl
0l

qx¼0 are nonzero only
between consecutive LLs, η0 ¼ η� 1, with no restriction
on s. At finite qx, this selection rule is relaxed.
Equations (5)–(8) represent the main analytical result of

this Letter. Note that in Eq. (5) all information about the
cavity is on the left-hand side (lhs), while all information
about the 2DEG is on the right. At ω ¼ 0 (at the sought
SQPT) the lhs is proportional to c2 which is much larger

than any velocity scale occurring in a typical solid.
Moreover, when ω ¼ 0, the second term on the right-hand
side (rhs) of Eq. (6) is nothing but the total sum of the
oscillator strengths jgl0lqx j2=ωLL

l0l, which is the fundamental
quantum optics quantity that determines the occurrence of
the SQPT in multilevel systems [19]. It diverges at the level
crossing, balancing the large c2 factor on the lhs and
allowing a solution to Eq. (5).
The key reason is that for the spin-flip transitions at

qx ≠ 0, the dipoles gl
0;l

qx can be nonzero even at a crossing
between ϵl0 and ϵl, opening the possibility of a diverging
oscillator strength, as illustrated in Fig. 2. This is in sharp
contrast with what happens at qx ¼ 0. Indeed, for a generic
single-electron Hamiltonian H, after the minimal coupling
replacement of the electron momentum p→pþðe=cÞAcav,
where Acav is the uniform cavity field, the matrix element
of the linear light-matter coupling term between two
arbitrary eigenstates j1i, j2i of H, is proportional to that
of the electron velocity v ¼ ∂H=∂p ¼ i½H; r�, so that
v12¼h1j½H;r�j2i¼ðϵ1−ϵ2Þh1jrj2i. At the crossing ϵ1−ϵ2
vanishes, so both the velocity matrix element v12 and the
oscillator strength ∝ jv12j2=ðϵ1 − ϵ2Þ vanish. Crucially, this
argument does not apply to spatially nonuniform fields.
From a different perspective, gauge invariance imposes

a constraint on Qyyðqx;ωÞ: a physical quantity (current)
cannot respond to a static spatially homogeneous vector
potential, thus Qyyð0; 0Þ ¼ 0 (see S3 in [41] for details).
This prohibits the instability at qx ¼ 0; models or approx-
imations violating this constraint can give wrong results.
Qyyð0; 0Þ ¼ 0 implies a cancellation between the two
terms in Eq. (6). This cancellation is usually ensured
by sum rules such as the Thomas-Reiche-Kuhn sum rule
[14,17–21,23]. Here, we have checked numerically that
Qyyð0; 0Þ ¼ 0.
Figure 3(a) shows the two sides of Eq. (5) at ω ¼ 0 as

functions of the cavity field wave vector qx, and six values
of qx > 0 (vertical dashed lines) when ω ¼ 0 is a solution.
In Fig. 3(b), we plot the solution of Eq. (5) for ω, which
indeed vanishes at the indicated values of qx. This curve
shows that the system is unstable. It cannot be interpreted
as the excitation frequency for parameter values corre-
sponding to the superradiant phase, since the ground state is
reconstructed, and an additional mean-field term should be
introduced into Hamiltonian (1). This term spontaneously
breaks the translational symmetry, so qx is not a good
quantum number anymore. The spatial profile of the
symmetry breaking term must be determined from self-
consistent mean-field equations, which is beyond the
scope of this Letter. In the inset of Fig. 3(a), we plot the
two sides of Eq. (5) at ω ¼ 0 versus B for given qx, for
nQW ¼ 1 and nQW ¼ 103. Essentially, we exploit a diver-
gence appearing around level crossings to make Eq. (5)
have a solution, and then use large nQW to extend the
superradiant region.

(a) (c)

(b) (d)

FIG. 2. (a) LL energies ϵ29;þ, ϵ30;þ ϵ37;− ϵ38;− [Eq. (2)] versus B
for the parameters of Fig. 1. The gap closes between the states
j37;−i and j30;þi at Bc ≃ 1.23721 T. (b) The spin-flip dipole
squared ðgþ−

qx Þ2 ≡ ðg30þ;37−
qx Þ2 [Eq. (7)] versus qx at B ¼ Bc.

At qx ¼ 0, it vanishes by gauge invariance. When qx increases,
it oscillates and takes nonzero values, opening the possibility
of a diverging oscillator strength proportional to ðgþ−

qx Þ2=
ðϵ30;þ − ϵ37;−Þ. Finally, we plot ðgþ−

qx Þ2; ðgþþ
qx Þ2, and ðg−−qx Þ2

versus B for qx ¼ 4 × 108 m−1 in (c) and qx ¼ 0 in (d).
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Figure 4 shows the instability regions in the ðα; qxÞ plane
for fixed B and ν. They appear for qx ≠ 0 and for α close
to those given by Eq. (3) for some integers η1 ≠ η2,
η1 þ η2 ¼ ν, shown by dashed red lines in Fig. 4. The
characteristic widthΔα of the “superradiant” regions on the
phase diagram can be estimated as (Supplemental Material,
S4 [41])

Δα ∼
1

ν2
nQWnee2

ðm�cÞ2 ; ð9Þ

and the typical scale of qx is given by the inverse cyclotron
radius ð ffiffiffi

ν
p

lBÞ−1. The superradiant regions are very narrow;
this happens because the mechanism for the instability
can be traced to the magnetostatic interaction, as discussed
below. Typically, one arrives at the Dicke model assuming
the light-matter coupling via the cavity electric field.
However, this electric field, ∝ ∂Acav=∂t, vanishes at
ω ¼ 0. The remaining magnetic interaction is intrinsically
weak. These simple physical arguments are not obvious
from the equations.
From Eq. (9) and Fig. 4 we see that small filling factors

are favoring the superradiant phase. This is in stark contrast
to the condition of ν ≫ 1 formulated in Ref. [40] to achieve
the ultrastrong coupling regime because the SQPTobtained
here is determined by the magnetic coupling and not the
electric one.
Finally, it is meaningful to consider the limit Lz → ∞ in

Eq. (5), corresponding to simply removing the mirrors.
Moreover, the smallest unstable qx ≈ 40 μm−1 in Fig. 3(b)
is already deep in this limit, cothðqxLz=2Þ ≈ 1. In fact, the
same instability can be obtained by considering just the
magnetostatic energy of a 2DEG in a uniform magnetic
field. Normally, such a 2DEG has a uniform magnetization.
However, it may be energetically advantageous to sponta-
neously develop an additional spatially modulated mag-
netization, which produces a space-dependent evanescent
magnetic field. This, in turn, couples to the magnetization,
lowering the total energy of the 2DEG and the field. The
criterion for this paramagnetic instability (Supplemental
Material, S5 [41]) coincides with Eq. (5) at ω ¼ 0,
Lz → ∞. The resulting modulated magnetization pattern
is analogous to the so-called Condon domains [31–34].
Indeed, such a domain structure has the characteristics of
the superradiant phase: the magnetic field produced by the
domains corresponds to a nonzero expectation value of
the photon field haqx;nzi. Note that no-go theorems for
inhomogeneous field configurations were established for a
collection of nonmagnetic [15,21] or diamagnetic [16]
atoms excluding a paramagnetic instability.
Conclusions and outlook.—We proved that the SQPT

can be reached in a cavity QED system with Rashba spin-
orbit coupling and nonuniform cavity fields due to the
singularity of spin-flip transitions, for which the spin-flip
dipole at qx ≠ 0 can be nonzero even if the transition
energy vanishes. Consequently, the SQPT must occur close
to LLs energy crossings and requires relatively fine tuning
of B and ne, as well as large nQW. We have shown that
the SQPT can be viewed as a static paramagnetic instability
of the 2DEG, the static cavity field corresponding to the
evanescent magnetic field induced by a spatially modulated
2DEG magnetization. Moreover, the presence of the cavity
is not necessary: the SQPT can also happen via the
coupling to the free vacuum field.
The microscopic model we studied in this Letter has the

minimal number of ingredients necessary to produce the

FIG. 3. (a) The rhs (the solid black curve) and the lhs (the dash-
dotted blue curve) of Eq. (5) at ω ¼ 0 divided by ðnQWnee2=m�Þ,
plotted versus qx at B ¼ 1.23722 T [which exceeds Bc, cf.
Fig. 2(a)] for α ¼ 0.7 eVÅ, m� ¼ 0.02m0, ν ¼ 67, Lz ¼
20 μm, ε ¼ 10, nQW ¼ 100. Their crossings, shown by the
vertical dashed lines, give solutions of Eq. (5) for qx at
ω ¼ 0. Inset: the same quantities plotted versus B for
qx ¼ 4.8 × 107 m−1, where the red (respectively, green) curve
corresponds to nQW ¼ 1 (respectively, nQW ¼ 1000). (b) Solution
of Eq. (5) for ω, vanishing at the indicated qx, for nQW ¼ 100.

FIG. 4. Instability regions (in blue) in the parameter plane
ðα; qxÞ for different B, ν, and nQW, also displayed for a wider
range of parameters in the insets. Dashed red lines show values of
α which produce a level crossing [Eqs. (2), (3)]. The instability
occurs around these crossings. (a) B ¼ 4 T, ν ¼ 60, and nQW ¼
100; (b) B ¼ 20 T, ν ¼ 4, and nQW ¼ 20.
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SQPT. We adopted a simplified description of the cavity
field, focusing on the transverse electric modes propagating
in the x direction; a more realistic description [44–46] may
change the results quantitatively. To make a connection
with state-of-the-art experiments [12,13], other ingredients
must be introduced. Zeeman coupling is likely to enhance
the effect since the spin contribution to the 2DEG magnetic
susceptibility is usually paramagnetic. Coulomb interaction
is also likely to further soften the excitations due to the
excitonic effect. Very important is the disorder which lifts
the LL degeneracy and broadens the cyclotron resonance.
Coherent state based methods successfully describe the
local density of states in a 2DEG with smooth disorder in a
strong magnetic field [38,47]; the effect of smooth disorder
on the inter-LL transitions remains an open problem.
Effects of strain, as well as mixing between bands with
different spins, which both influence the amplitude and the
nature of the Rashba coupling [48–50], could also be
studied. Adapting our calculations to other cavities, where
an additional geometric factor can enhance the light-matter
interaction [51], could also be useful. Finally, in this Letter,
we focused on the instability, leaving aside the study of
the superradiant phase itself, a topic that deserves future
investigation as well.
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Matteo Biondi, Jérome Faist, Giacomo Scalari, Janine
Keller, Maksym Myronov, Rai Moriya, Takaaki Koga,
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