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We study the tunneling through a two-dimensional topological insulator with topologically protected
edge states. It is shown that the tunneling probability can be quantized in a broad parameter range, 0 or 1,
tuned by an applied transverse electric field. Based on this field-effect tunneling, we propose two types of
topological transistors based on helical edge or interface states of quantum spin Hall insulators separately.
The quantized tunneling conductance is obtained and shown to be robust against nonmagnetic disorders.
Usually, the topological transition is necessary in the operation of topological transistors. These findings
provide a new strategy for the design of topological transistors without topological transitions.

DOI: 10.1103/PhysRevLett.123.206801

Introduction.—It is well known that the tunneling
probability is usually very small and decays exponentially
with the transport length in a normal insulator. One may
wonder what the tunneling is like through a topological
insulator (TI) in the presence of transverse surface or edge
states. It is intuitively supposed that the coupling between
two surface states at opposite surfaces is capable of an
important role in the tunneling. It has been shown [1] that
the coupling between the surface states at two opposite
surfaces opens a gap in the surface states due to the so-
called finite-size effect. The tunneling between Fermi-arc
surface states through Weyl points is recently verified by
the theoretical prediction [2] and the experimental obser-
vation of three-dimensional quantum Hall effect [3–5] in
Weyl semimetals. The natural question is whether the
perfect tunneling is possible between the edge or surface
states at two opposite edges or surfaces in a gapped
topological insulator.
In addition to providing dissipationless transport chan-

nels, TIs are also used to design topological transistors
[6–12] in device applications for the benefit of robustness
against impurity scattering. In such topological transistors,
the off state is usually realized by opening a gap in the edge
channels through a topological phase transition or the
finite-size effect. The topological phase transitions have
been suggested to be controlled by an electric field [7–13],
a magnetic field [13–15], a strain [16], or even the pressure
and temperature [17,18]. However, the experimental reali-
zation of the electric manipulation of topological transitions
is still a challenge. Further, the gap opened by the finite-size
effect is very small. It implies that the off state requires fine-
tuning of the chemical potential and a very low temperature
in longitudinal tunneling transistors along edge channels.

Additionally, the nonlocal transistor based on the coupling
of edge or surface states [19,20], the topological spin
transistor based on spin [21–23], and the imperfect tran-
sistor based on the modulation of impurity scattering [24]
have also been discussed.
In this Letter, we show that the tunneling between

the edge or surface states at opposite boundaries can be
perfect and tunable from 0 to 1 by an electric field. This
transverse tunneling effect provides a new strategy for
the design of topological transistors without topological
transitions. We propose two types of transverse tunneling
transistors based on helical edge and interface states of
quantum spin Hall insulators separately and determine the
conditions of quantized conductance for the on or off
state, respectively. Compared with longitudinal tunneling
transistors along edge channels, such transverse tunneling
transistors overcome the challenge of fine-tuning of
the chemical potential to reside in the small finite-size
induced gap.
Tunneling between topological edge states.—We start by

considering the tunneling between topological surface
states. For simplicity, we consider a two-dimensional
topological insulator (2DTI) such as HgTe/CdTe quantum
wells [25–27]. When the Fermi energy lies inside the bulk
gap, only the helical edge modes are responsible for the
transport. In the absence of magnetic impurities, two sets of
chiral edge states are degenerate for spin-up and spin-down
electrons. Therefore, we consider only the tunneling
between spin-down edge states. The physics is the same
for spin-up edge states but with opposite chirality. In a
2DTI ribbon shown in Fig. 1(a), two chiral spin-down edge
modes are coupled by the finite-size effect. The effective
model used to describe the coupling can be written as
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H ¼
�
ℏvFk Δ
Δ −ℏvFk

�
; ð1Þ

where �ℏvFk denote the edge states at two edges and Δ
describes the coupling between them. The finite-size
induced gap Δ is related to the bulk gap Δ0 by Δ ¼
Δ0e−2L=ξ [28], where L is the width of the ribbon, and
ξ ¼ ℏvF=Δ0 is the penetration depth of the edge states. By
solving the eigenproblem, we have eigenenergies E� ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ2v2Fk

2 þ Δ2
p

and corresponding eigenwave functions

ψ� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ Δ2

p
�Δ
u

�
eiky ð2Þ

with u ¼ E� − ℏvFk.
It is shown in Fig. 1(b) that the edge states are gapped by

the finite-size effect. We consider the motion of an electron
in the initial state A in the presence of an electric field Ey
along the y direction. According to the equation of motion
_k ¼ −eEy=ℏ, the electron will be slowed down by the
electrostatic force and get to state C. Then the electron will
either get to state B or cross the gap to get to state D.
Figure 1(c) shows that states A andD locate at the left edge,
while B locates at the right edge. If the electron evolves
from state A to state B, it tunnels from the left edge to the
right edge through the insulating bulk.

Beyond this semiclassical picture, we can also evaluate
the probabilities of two processes by revisiting the evolu-
tion as a quantum scattering problem. The linear electro-
static potential induced by the uniform electric field can
be simplified and modeled by two step functions, i.e.,
UðyÞ ¼ E½ΘðyÞ þ Θðy − wÞ�, where E is the energy of the
incident electron and y ∈ ½0; w� is the range in which the
energy is inside the gap, as sketched in Fig. 1(d). We argue
that this approximation is valid because the scattering will
be possible only when the energy is around the gap. Far
away from the gap, the coupling between the edge states at
two sides will vanish and the scattering will be forbidden.
For y < 0, the wave function is written as

ψðyÞ ¼
�Δ
u

�
eiky þ r

�
u

Δ

�
e−iky; ð3Þ

where the wave vector k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − Δ2

p
=ðℏvFÞ and u ¼

E − ℏvFk. For simplicity, we consider only the situation
of E > 0. In the area y ∈ ½0; w�, the kinetic energy is zero
and the wave function reads

ψðyÞ ¼ a

�
1

−i

�
e−Δy=ðℏvFÞ þ b

�
1

i

�
eΔy=ðℏvFÞ: ð4Þ

For y > w, the wave function is

ψðyÞ ¼ t

� Δ
−u

�
e−iky: ð5Þ

By the continuity of the wave function at y ¼ 0 and y ¼ w,
we can obtain the transverse transmission probability as
follows:

Ty ¼ jtj2 ¼ E2 − Δ2

E2cosh2½Δw=ðℏvFÞ�
: ð6Þ

Note that the tunneling probability along the x direction
should be defined as Tx ¼ jrj2 ¼ 1 − Ty. From Eq. (6), we
can clearly see that the quantized tunneling will happen
when Δw=ðℏvFÞ ≫ 1. However, the tunneling probability
will be very small when the electric field is absent. It
formulates that the tunneling probability can be modulated
by the transverse electric field.
Topological transistor based on edge state tunneling.—

Based on this field-effect tunneling of edge states, we
propose a topological transistor as shown in Fig. 2(a). In
such an inverted T-shaped junction, a 2DTI quantum wire
is connected with two metallic leads at the foot. The
incident electron from the left lead first moves upward by
means of the left edge state. Under the modulation of a
transverse electric field, the electron may tunnel to the right
side completely or do not tunnel at all. The conductance of
the junction will be a conductance quantum for the former

(a)

(c) (d)

(b)

FIG. 1. (a) Sketch of the tunneling between topological edge
states in a 2DTI under an electric field Ey. Only spin-down edge
states are shown. (b) The band structure shows a gap due to the
finite-size effect. (c) The wave function distributions of states A
and B marked in (b). (d) The linear electrostatic potential Uy

induced by the uniform electric field Ey can be simplified and
modeled by two step functions.
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case, and zero for the latter case. To break the connectivity
between the left and right edge states, two ferromagnets are
deposited at the top and bottom of the wire to gap the edge
channel.
We take HgTe/CdTe quantum wells as an example of the

2DTI. The effective Hamiltonian reads

HTI ¼ ϵðkÞþ

0
BBB@
MðkÞ Akþ 0 0

Ak− −MðkÞ 0 0

0 0 MðkÞ −Ak−
0 0 −Akþ −MðkÞ

1
CCCA; ð7Þ

where ϵðkÞ ¼ C −Dðk2x þ k2yÞ, MðkÞ ¼ M0 − Bðk2x þ k2yÞ,
and k� ¼ kx � iky. In our calculation, the material param-
eters are taken asA ¼ 364.5 meVnm,B ¼ −686 meVnm2,
C ¼ 0,D ¼ −512 meVnm2, andM0 ¼ −10 meV. The left
and right leads are two normal quantum wires [29]. To
calculate the conductance of such a junction, we first rewrite
the tight-binding Hamiltonian of the junction in the square
lattice. Then we calculate the conductance and current
distribution by means of the lattice Green’s function tech-
nique [29].
Figure 3 presents the numerical results of conductance

and current distribution of an inverted T-shaped junction
sketched in Fig. 2(a). The length of the 2DTI wire is W2 ¼
4000a (along the y direction) and the width is L1 ¼ 31a
(along the x direction, i.e., the transport direction), where a
is the lattice constant. The width of the two leads is
W1 ¼ 30a. The dispersion of edge states is shown in
Fig. 3(a) where spin-up and spin-down edge states are
degenerate. The finite-size effect induces the coupling
between two edge states located at two edges and opens

a small gap which is located near 7.5 meV. When incident
electrons with the Fermi energy far below the gap (e.g.,
EF ¼ 1 meV) enter into the 2DTI from the left lead, only
spin-down electrons can occupy the edge state to propagate
upward along the edge. Without the electric field, spin-
down electrons will be reflected to spin-up electrons by the
top ferromagnet and then propagate downward, and finally
go back to the left lead. In such a case, the conductance is
zero. By applying a negative electric field, the potential can
be decreased linearly along the 2DTI wire. If the electric
field is big enough or the wire is long enough, there exists a
region in the wire where the Fermi energy is located inside
the gap. If the length of the region w is big enough, spin-
down electrons will completely tunnel to the right edge
according to Eq. (6). Now the conductance is a conductance
quantum.
For a fixed finite-size-effect induced gap Δ, a big w

means a weak electric field Ey due to w ¼ 2Δ=Ey. For a
2DTI ribbon with finite length W2, the minimal potential
difference between the bottom and the top should be
EF − E0 to let the Fermi energy EF cross the gap. Here
E0 denotes the energy of the center of gap. Therefore, the
minimal electric field should be ðEF − E0Þ=W2. To make
Ey small enough to get a quantized tunneling conductance,
we need a big enough W2. We consider a long 2DTI wire
(W2 ¼ 4000a) to get a big w. The well-quantized con-
ductances are obtained as functions of Ey for various EF, as
shown in Fig. 3(b). The electric field Ey causes a potential

(a) (b)

FIG. 2. Sketch of topological transistors based on (a) edge state
and (b) interface state tunneling. In (a), a 2DTI quantum wire is
connected with two metallic leads at the foot. Two ferromagnets
(FMs) are deposited at the top and bottom of the wire to gap the
edge channel. In (b), a normal insulator quantum wire are
sandwiched between two 2DTI leads. The transverse electric
field Ey is used to assist the tunneling between topological edge
or interface states located at two edges or interfaces.

(a)

(c) (d)

(b)

FIG. 3. Numerical results for the topological transistor based on
edge state tunneling shown in Fig. 2(a). (a) Dispersion of edge
states in a 2DTI quantum wire with the width L1 ¼ 31a.
(b) Conductance as a function of the transverse electric field Ey

for three chosen Fermi energies EF ¼ 0, 1, and 2 meV. Note that
Ey is negative. (c) Current distribution for EF ¼ 1 meV and
Ey ¼ 8 meV. (d) Conductance in the presence of nonmagnetic
disorders with various disorder strengths Udis for EF ¼ 1 meV.
Structure parameters areW1 ¼ 30a,W2 ¼ 4000a, andL1 ¼ 31a.
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drop along the wire from bottom to top. For small Ey, the
conductance is 0 because the tunneling does not occur.
When Ey is big enough that the potential drop is larger
than the difference between the gap position and EF
(7.5 meV–EF), there exists a region in the wire where EF
is located inside the gap. Now the conductance becomes 1
due to the tunneling between edge states. The tunneling is
verified by the current distribution sketched in Fig. 3(c). The
main tunneling position is exactly within the region where
EF lies inside the gap. Figure 3(d) shows that the quantized
conductance is also robust against nonmagnetic disorders
which are modeled by the random on-site potential uni-
formly distributed in the interval ½−Udis=2; Udis=2� [29].
Topological transistor based on interface state

tunneling.—We also propose a topological transistor based
on interface state tunneling as shown in Fig. 2(b). A normal
insulator (NI) quantum wire with the size L2 ×W are
sandwiched between two 2DTI leads with the same width
W. The incident electrons from the edge states of left 2DTI
either go back to the left lead or tunnel to the right lead
through the interface state tunneling between two inter-
faces. The well-quantized conductance is shown in Fig. 4.
The parameters for 2DTI leads for the same with those in
Fig. 3. The NI is also described by Eq. (7) but with only one
different parameter M0 ¼ 10 meV. The turn-on electric
field exactly corresponds to the potential increase from
bottom to top which equals to the difference between EF

and the gap [nearly EF − 0.5 meV; see Figs. 4(a) and 4(b)].
The current distribution of spin-up electrons in Fig. 4(c)
demonstrates the process of tunneling. The robustness of
this tunneling effect is verified by the well-quantized
conductance in the presence of nonmagnetic disorders,
as shown in Fig. 4(d).
Quantization conditions.—Wegive a brief guide to obtain

well-quantized conductance in such topological transistors.
For the off state, even EF is far away from the gap, and there
still exists a lowprobability that the tunnelingwill occur. The
low probability is found to be Δ2=E2

F [29]. To obtain a
sufficiently small conductance in the off state, we first
choose a suitable width L1 or L2 of the central device wire
which should be small enough to induce a sufficiently small
Δ, according to Δ ¼ Δ0e−2L=ξ. Then we determine the
length of the device wire W2 or W, which should be large
enough to satisfy the condition Δw=ðℏvFÞ ≫ 1 according
to Eq. (6), which ensures a well-quantized conductance of
1 or 2 in the on state.
Experimental feasibility.—Finally, we comment on the

experimental feasibility of proposed topological transistors.
To achieve a quantized tunneling, the edge or interface
channel should be ballistic before the tunneling. For 2DTIs,
it has been experimentally found that the backscattering
nearly always induces a deviation from the quantized
conductance for a long edge channel [25,27,30,31]. The
possible underlying mechanisms have been extensively
discussed, including the presence of an external magnetic
field or magnetic impurities, an e − e interaction through
the third order perturbation [32–34], the coupling of edge
modes to charge puddles [35,36], the edge reconstruction
[37], and the effects of Rashba spin-orbit coupling [38,39],
phonons [40], nuclear spins [41,42], disordered probes
[43], coupling to external baths [44], noise [45], etc. A
significant breakthrough was made very recently [46]. It
was shown that the combined action of short-range non-
magnetic impurities located near the edges and on-site
electron-electron interactions effectively creates noncol-
linear magnetic scatterers and, hence, results in strong
backscattering, even at zero temperature. Experimentally,
both the spatially resolved study of backscattering using
scanning gate microscopy [47] and the Hall bar measure-
ment [48] reported the ballistic transport and quantized
conductance in samples with an edge channel length up to
2 μm. The edge length dependence of the resistance
indicates that the coherence length is up to 4.4 μm [48].
The numerical calculations show that the edge channels

with length 4000a will promise a quantized tunneling.
For InAs/GaSb quantum wells, the lattice constance is
approximately 0.6 nm. The length of ballistic channels
4000a ¼ 2.4 μm is quite promising in experiments, though
still a little more than the 2 μm reported so far. Moveover,
because of the small band gap in HgTe/CdHgTe and InAs/
GaSb quantum wells, the experimental observation of well-
quantized tunneling conductance should be performed at

(a)

(c)

(d)

(b)

FIG. 4. Numerical results for the topological transistor based on
interface state tunneling shown in Fig. 2(b). (a) Dispersion of a
2DTI/NI/2DTI quantum wire where a NI wire is sandwiched by
two 2DTI wires. Solid black (dashed red) curves represent
interface (edge) states. The width of the NI wire is L2 ¼ 22a.
(b) Conductance as a function of Ey for three chosen Fermi
energies EF ¼ 5, 6, and 7 meV. (c) Current distribution for EF ¼
6 meV and Ey ¼ 7 meV. Only spin-up electrons are considered.
(d) Conductance in the presence of nonmagnetic disorders with
various disorder strength Udis for EF ¼ 6 meV. Structure param-
eters are W ¼ 4000a and L2 ¼ 22a.
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low temperature. The numerical calculations show that
quantized tunneling conductance can persist at temper-
atures up to 10 K [29].
For a single edge, although the backscattering seems

inevitable in a quite long quantum spin Hall edge channel,
it is absent in a chiral edge channel because of the quantum
anomalous Hall (QAH) effect. The reported ballistic
channels in experiments are up to 2.4 mm in length
[49]. Our proposed transistors can also work based on
the tunneling between quantum anomalous Hall edge or
interface states. For the transistor based on the QAH
interface state tunneling, the setup is the same as that
shown in Fig. 2(b). The results shown in Fig. 4 can also
apply to QAH interface state tunneling, except with a
change of the quantized conductance from 2 to 1. For the
transistor based on the QAH edge state tunneling, we can
propose a new longitudinal transistor which also possesses
quantized conductances [29]. Therefore, the quantized
tunneling effect should be also observable in transistors
based on QAH insulators. It is worth noting that the search
for QAH insulators at higher temperature, which in practice
is smaller than the Curie temperature of ferromagnetism
[50,51], is fast progressing [52,53].
More importantly, we note that a newly published work

[54] reported the latest progress in the dissipationless
transport of quantum spin Hall edge channels. Lunczer
et al. successfully achieved quantized conductance even in
long channels up to 13 μm in HgTe quantum well struc-
tures, through the flattening of the potential landscape by
controlled gate training. With this technique, the use of
quantized helical edge channel transport becomes feasible
in macroscopic devices.
Conclusions.—In conclusion, we study in this Letter the

tunneling between topological edge or interface states. It is
found that the tunneling probability can be quantized and
tunable by an electric field. We propose topological
transistors based on edge or interface state tunneling in
junctions including 2DTIs. The conductance can be quan-
tized for a suitable size of the tunneling region and is also
robust against nonmagnetic disorders. The proposed topo-
logical transistors are accessible in experiments and with-
out topological transition in the operation. The finding
sheds new light on the design of topological transistors.
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