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Active systems exhibit spontaneous flows induced by self-propulsion of microscopic constituents and
can reach a nonequilibrium steady state without an external drive. Constructing the analogy between the
quantum anomalous Hall insulators and active matter with spontaneous flows, we show that topologically
protected sound modes can arise in a steady-state active system in continuum space. We point out that the
net vorticity of the steady-state flow, which acts as a counterpart of the gauge field in condensed-matter
settings, must vanish under realistic conditions for active systems. The quantum anomalous Hall effect thus
provides design principles for realizing topological metamaterials. We propose and analyze the concrete
minimal model and numerically calculate its band structure and eigenvectors, demonstrating the emergence
of nonzero bulk topological invariants with the corresponding edge sound modes. This new type of
topological active systems can potentially expand possibilities for their experimental realizations and may
have broad applications to practical active metamaterials. Possible realization of non-Hermitian topological
phenomena in active systems is also discussed.
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Introduction.—Topologically nontrivial bands, which
have been at the forefront of condensed matter physics
[1–6], can also appear in various classical systems such as
photonic [7–10] and phononic systems [11–17]. Such topo-
logically nontrivial systems exhibit unidirectional modes that
propagate along the edge of a sample and are immune to
disorder. The existence of edge modes originates from the
nontrivial topology characterized by bulk topological invari-
ants of underlying photonic or acoustic band structures. The
topological edge modes give rise to novel functionalities
potentially applicable to, e.g., sonar detection and heat diodes
[11,15]. Furthermore, they are argued to be closely related to
the mechanism of robustness in biological systems [18,19].
On another front, active matter, a collection of self-

driven particles, has attracted much interest as an ideal
platform to study biological physics [20–22] and out-of-
equilibrium statistical physics [23–28]. While a prototype
of active matter has been originally introduced to under-
stand animal flocking behavior [29,30], recent experimen-
tal developments have allowed one to manipulate and
observe artificial active systems in a controlled manner
by utilizing Janus particles [31], catalytic colloids [32], and
external feedback control [33].
The aim of this Letter is to show that a topologically

nontrivial feature can ubiquitously emerge in a nonequili-
brium steady state of active matter and demonstrate it by
analyzing the concreteminimalmodel, which can be realized
with current experimental techniques. Specifically, we first
point out that the net vorticity of the steady-state flow must
vanish under realistic conditions for active systems in the
continuum space. Since the vorticity in active matter can act

as a counterpart of the magnetic field in condensed matter
systems, this fact indicates that the quantum anomalous Hall
effect (QAHE) naturally provides design principles for
realizing topological metamaterials.We propose and analyze
the activemattermodel inspired by the flat-band ferromagnet
featuring the QAHE [34]. We numerically calculate its band
structure and eigenvectors, and demonstrate that they exhibit
nonzero topological invariants with the corresponding edge
modes. Possible relation to non-Hermitian topological phe-
nomena is also discussed.
Topological edge modes of active matter have been

recently discussed by several authors [19,35–37]. There,
the presence of nonzero net vorticity of the active flows,
which can act as an effective magnetic field, was crucial to
support topological edge modes reminiscent of the quantum
Hall effect [1,38].Yet, this required the introduction of rather
intricate structures in active systems such as large defects
[35], curved surface [36], and rotational forces [19,37]. One
of the novel aspects introduced by this Letter is to eliminate
these bottlenecks by constructing the analogy to the QAHE,
significantly expanding possibilities for realizing topologi-
cal metamaterials. Our proposal is based on the simplest
setup on a flat continuum space with assuming no internal
degrees of freedom (d.o.f.) of active particles. This class of
systems is directly relevant to many realistic setups of active
systems [39–43] and our design principle is applicable
beyond the minimal model proposed here.
Emergent effective Hamiltonian for active matter.—To

describe collective dynamics of active matter, we use the
Toner-Tu equations [44–47], which are the hydrodynamic
equations for active matter with a polar-type interaction:
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∂tρþ∇ · ðρvÞ ¼ 0; ð1Þ

∂tv þ λðv ·∇Þv þ λ2ð∇ · vÞv þ λ3∇jvj2
¼ ðα − βjvj2Þv −∇P

þDB∇ð∇ · vÞ þDT∇2v þD2ðv ·∇Þ2v þ f; ð2Þ

where ρðr; tÞ is the density field of active matter and vðr; tÞ
is the local average of velocities of self-propelled particles.
Equation (1) presents the equation of continuity. In Eq. (2),
the first term of its right-hand side suggests a preference for
a nonzero constant speed jvj ¼ ffiffiffiffiffiffiffiffi

α=β
p

if α is positive while
negative α results in the nonordered state jvj ¼ 0. The
coefficients in these equations can be obtained from
microscopic models [48–53]. To simplify the problem,
we ignore the terms including λ2;3 and also the diffusive
terms that contain the second-order derivative. This con-
dition can be met in a variety of active systems [35,36,50].
Effects of λ2;3 terms can be taken into account by
renormalizing λ if necessary [44]. We also assume that
the pressure P is proportional to ρ as appropriate for an
ideal gas.
Linearizing the Toner-Tu equations around a steady-state

solution, we derive an eigenvalue equation for the fluctua-
tions of density and velocity fields, δρðr; tÞ ¼ ρðr; tÞ −
ρssðrÞ and δvðr; tÞ ¼ vðr; tÞ − vssðrÞ, respectively, where
ρss and vss represent their steady-state values. We also
assume that the steady-state speed jvssj is much smaller
than the sound velocity c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pρss=ρ
p

. To clarify the
argument, we define the following dimensionless variables:
r0 ¼ r=a, t0 ¼ ct=a, δρ0ðr0; t0Þ ¼ δρðar0; at0=cÞ=ρssðar0Þ,
δv0ðr0; t0Þ ¼ δvðar0; at0=cÞ=c, and v0ssðr0Þ ¼ vssðar0Þ=c,
where a is a characteristic length of a system that we
specify as a lattice constant later. For the sake of notational
simplicity, hereafter we express the dimensionless variables
r0, t0, v0ss as r, t, vss. The resulting linearized equation in the
frequency domain is Hψ ¼ ωψ with ψ ¼ ðδρ̃; δṽx; δṽyÞT
and H being the effective Hamiltonian defined as

H ¼

0

B
@

−ivss ·∇ −i∂x −i∂y

−i∂x −iλvss ·∇ 0

−i∂y 0 −iλvss ·∇

1

C
A; ð3Þ

where δρ̃ðr;ωÞ, δṽx;yðr;ωÞ are the Fourier components in
the frequency domain. We here omit the spatial variation of
ρss and the divergence of vss as justified in the Supplemental
Material [54]. We note that, while the coefficient matrix H
can be regarded as the effective Hamiltonian, it can in
general be non-Hermitianwhen the diffusive terms in Eq. (2)
are included.
Absence of net vorticity in active matter.—The linearized

equation can be deformed into the Schrödinger-like
equation [35]

ð−i∇ − VssÞ2δρ̃ ¼ ω2δρ̃; ð4Þ

where Vss ¼ ωðλþ 1Þvss=2 (see the Supplemental Material
[54] for the derivation). Equation (4) demonstrates that Vss
acts as the effective vector potential and its vorticity
∇ × Vss can be interpreted as the effective magnetic field.
We consider active particles without internal d.o.f.,

which reside on a two-dimensional plane with a periodic
structure of a unit cell Ω. To avoid intricate structures, we
assume that non-negligibly large defects are absent; i.e., the
length of the perimeter of a defect in each unit cell can be
neglected with respect to that of the unit-cell boundary ∂Ω.
We note that this condition does not preclude possibilities
of minuscule defects created by, e.g., thin rods as realized in
Ref. [43] or the presence of inhomogeneous potentials
relevant to chemotactic bacteria subject to a nonuniform
concentration of chemical compounds [55].
The net vorticity is then obtained by the integration

over the unit cell and can be expressed via the Stokes’
theorem as

Z

Ω
ð∇ × VssÞ · dS ¼

I

∂Ω
Vss · dr: ð5Þ

FIG. 1. Active particles on the two-dimensional flat space move
under the influence of periodically aligned pillars. The red and
green curved arrows represent the steady-state flows. (a) Triangu-
lar lattice geometry accompanying topologically trivial bands.
The line integral along each boundary of the unit cell (blue and
red solid lines) cancels each other because of the periodicity,
leading to the vanishing net vorticity. (b) The proposed setup for
topological active matter with kagome lattice geometry. Blue
solid lines indicate the boundary of the unit cell. We set the side
length of the unit cell as a ¼ 1.
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Because of a periodic structure of the steady flow along the
unit-cell boundary ∂Ω, one can show that the line integra-
tion on the right-hand side of Eq. (5) adds up to zero (see
Fig. 1 for typical examples), resulting in the vanishing net
vorticity. Thus, in the active hydrodynamics of interest
here, it is prohibited to realize an analog of the quantum
Hall effect, which requires an external magnetic field
indicating nonzero net vorticity. Under the above condi-
tions, we naturally arrive at the conclusion that a topo-
logical active matter must be realized as a counterpart of the
QAHE, where the need for the external magnetic field can
be mitigated.
We mention why the counterparts of the quantum Hall

effect have been constructed in the previous setups [19,35–
37] despite the above argument. The active particles in
Refs. [19,37] exhibit self-rotations and thus their internal
angular momenta violate our assumption on the absence of
internal d.o.f. The model in Ref. [37] includes external
rotational force, where the Coriolis force acts as an effective
Lorentz force. In Ref. [35], the model includes large defects
around which additional line integrals contribute to extra
vorticity in Eq. (5). The curved space is discussed in
Ref. [36]; it violates our assumption on flatness of the
space. Altogether, these intricate structures allow one to
realize the net effective magnetic field.
The minimal model of topological active matter.—To

complete the analogy between the active matter and the
QAHE, we propose the minimal model illustrated in
Fig. 1(b). There, active particles obeying the Toner-Tu
equations move under the influence of small pillars located
at each site of a kagome lattice [56]. As illustrated in
Fig. 1(b), the steady-state velocity field vssðrÞ aligns on
each boundary of triangular and hexagonal subcells sep-
arated by blue solid and dashed lines. Thus, particles in the
triangular subcells circulate in the counterclockwise direc-
tion (green arrows) that is opposite to the direction of the
particle circulation in the hexagonal subcells (red arrows)
[57], resulting in the vanishing net vorticity. We confirm the
emergence of this steady-state flow by performing the
particle-based numerical simulation (see Supplemental
Material [54] and movie).
It is noteworthy that such an “anticorrelated” velocity

profile has been observed in bacterial experiments [43,58]
and also in numerical simulations [35,59]. In the cases of
triangular- and square-lattice structures [cf. Ref. [43] and
Fig. 1(a)], however, only topologically trivial bands can
appear due to the absence of a sublattice structure; this is
why the kagome-lattice structure (as considered here) is
crucial for realizing topological active matter.
Topological band structure.—We obtain the bulk dis-

persions by numerically diagonalizing the effective
Hamiltonian H. To obtain accurate results, we add the
redundant d.o.f. without affecting the band structure by
transforming H via a unitary matrix (see the Supplemental
Material [54]). This transformation allows for calculations

in the basis reflecting the centrosymmetry of the present
system. Unless including this redundant d.o.f., one ends up
with unphysical ky-independent bands. While this pre-
scription generates redundant eigenstates with eigenvalues
of 0, it does not affect any physical properties including the
topological feature. We thus analyze the eigenequation
H0ψ 0 ¼ ωψ 0 with ψ 0 ¼ ðδρ̃; δṽ1; δṽ2; δṽ3ÞT and H0 being
the effective Hamiltonian in the transformed frame

H0 ¼−i

0

B
B
B
B
B
B
@

vss ·∇ 2ffiffi
6

p ∂1
2ffiffi
6

p ∂2
2ffiffi
6

p ∂3

2ffiffi
6

p ∂1
2λ
3
vss ·∇ − λ

3
vss ·∇ − λ

3
vss ·∇

2ffiffi
6

p ∂2 − λ
3
vss ·∇ 2λ

3
vss ·∇ − λ

3
vss ·∇

2ffiffi
6

p ∂3 − λ
3
vss ·∇ − λ

3
vss ·∇ 2λ

3
vss ·∇

1

C
C
C
C
C
C
A

; ð6Þ

where we define the variables as δṽ1 ¼ 2δṽx=
ffiffiffi
6

p þ
δṽr=

ffiffiffi
3

p
, δṽ2 ¼ −δṽx=

ffiffiffi
6

p þ δṽy=
ffiffiffi
2

p þ δṽr=
ffiffiffi
3

p
, and
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FIG. 2. (a) The band structure of the nonordered system, i.e.,
vss ¼ 0. The dispersion is plotted along the line at kx ¼ 2π=3
with varying ky as indicated by the red arrow in the inset. We
impose the twisted boundary conditions, ψðxþ aÞ ¼ eik·aψðxÞ,
where ψ is an eigenfunction and a is a lattice vector. The
parameters used are c ¼ 1, ρss ¼ 1 and λ ¼ 0.8. (b) The enlarged
view of the band structure in the green dashed box in (a). The
orange solid (blue dashed) curves show the results with (without)
the steady-state flows. The integer number at each band repre-
sents the Chern number.
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δṽ3 ¼ −δṽx=
ffiffiffi
6

p
− δṽy=

ffiffiffi
2

p þ δṽr=
ffiffiffi
3

p
. Here, δṽr is

the redundant d.o.f. The derivatives denote ∂1 ¼ ∂x,
∂2 ¼ −∂x=2þ

ffiffiffi
3

p ∂y=2, and ∂3¼−∂x=2−
ffiffiffi
3

p ∂y=2, which
correspond to the directions along the grid lines of the
kagome lattice [cf. the blue dashed and solid lines in
Fig. 1(b)]. Figure 2 shows the band structure of the
effective Hamiltonian H0 calculated by the difference
method [60]. Since the effective Hamiltonian satisfies
the particle-hole symmetry, there is a counterpart for each
eigenvector whose eigenenergy has the same absolute
value and the opposite sign. For the nonordered case
jvssj ¼ 0, there are degeneracies at the edges of the first
Brillouin zone. Nonzero jvssj lifts those degeneracies and
opens band gaps, characteristics of topological materials
[3,7,9,10,12,15,16,34–36]. We note that our effective
Hamiltonian does not contain nonderivative terms that
are necessary for the original proposal of the QAHE [3].
The kagome-lattice structure mitigates this requirement
[34] as it can realize the local flux without next-nearest
hoppings.
We confirm that the proposed model exhibits a topo-

logically nontrivial band by calculating the Chern number
[2]. Specifically, the Chern number of the nth band is
defined as

Cn ¼
1

2π

Z

BZ
BnðqÞ · dS; ð7Þ

where BnðqÞ ¼ ∇q ×AnðqÞ is the Berry curvature with
AnðqÞ ¼ iunðqÞ · ½∇qunðqÞ� being the Berry connection
and unðqÞ being the nth eigenvector at wave number q. We
calculate the Berry curvature and the Chern number for
each band following the numerical method proposed in
Ref. [61]. The calculation shows that many of the bands
have nonzero Chern numbers [see e.g., Fig. 2(b)]. Figure 3
shows an example of the Berry curvature of the topologi-
cally nontrivial acoustic band [cf. the middle band with
C ¼ −2 in Fig. 2(b)], which exhibits sharp peaks at the
edges of the first Brillouin zone.

The bulk-edge correspondence predicts that the nonzero
Chern number accompanies a unidirectional edge mode
under open boundary conditions. While the correspondence
has been well established in tight-binding lattice models, it
has been recently argued to hold also in the continuum space
[62]. To test the existence of edge modes, we calculate the
sound modes for a supercell structure; 10 identical unit cells
are aligned with open boundary conditions in the x direction
while the periodic boundary conditions are imposed in the y
direction. Figure 4 shows the band structure in this setup and
the real-space profile of the sound mode at the gap between
the topologically distinct bands. The density fluctuation
rapidly decreases as we depart from the right end, indicating
the presence of the edge mode [Fig. 4(a)]. The edge bands
connect the lower and upper bulk bands [cf. the red curves in
Fig. 4(b)]. There is one unidirectionally propagating
mode for each edge at the bulk gap as consistent with
the sum of the Chern numbers of the bands below the energy
gap,

P
n< Cn< ¼ −1.

Summary and Discussions.—We showed that topologi-
cally nontrivial bands can arise in active systems without
implementing intricate structures, which have been con-
sidered as prerequisites for realizing topological sound
modes. Because of the vanishing net vorticity of steady-
state flows, we pointed out that the quantum anomalous
Hall effect provides a natural pathway to realize topological
active materials. These findings are supported by numerical
calculations of the band structure of the simple model,
which is inspired by the flat-band ferromagnet in solid-state
systems.
The present study opens several research directions.

First, our results expand possibilities for experimental
realizations of topological active systems. In particular,
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FIG. 3. Berry curvature of a topologically nontrivial band [the
middle band with the Chern number C ¼ −2 in Fig. 2(b)]. For the
sake of visibility, the Berry curvature is plotted by inverting its
sign. The parameters used are the same as in Fig. 2.
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FIG. 4. (a) Spatial profile of the magnitude of the density
fluctuation in an edge mode. The wave number and the
frequency are set to be ky ¼ −ð4 ffiffiffi

3
p

=15Þπ and ω ¼ 7.6, re-
spectively. (b) The corresponding band structure under the open
(periodic) boundary conditions in the x (y) direction. The red
curves show the dispersions associated with the edge mode in
(a). The gray horizontal dashed line indicates the presence of the
bulk band gap.

PHYSICAL REVIEW LETTERS 123, 205502 (2019)

205502-4



the experimental setup realized by Ref. [43] is directly
relevant to our model except for the lattice structure.
Second, our work suggests a simple and general way to
construct topological active matter by designing its periodic
structure (steady-state flow) with making the analogy to a
profile of a tight-binding lattice (gauge field) relevant to
electronic topological materials.
Third, besides technological applications, one major

motivation in the field of active matter is to advance our
understanding of emergent nonequilibrium phenomena in
biological systems. Biological systems modeled as active
matter include, for example, cells, molecular motors, and
cytoskeletons [30,47]. Topological edge modes may play
an important role in various biological functionalities,
which are often robust to disorder.
Finally, while we neglect the diffusive terms in

the Toner-Tu equation (2), they can in general make the
effective Hamiltonian non-Hermitian and suppress the
high-wave-number modes. It is worthwhile to explore
non-Hermitian topological phenomena in active systems;
of particular interest is an exotic topological feature that has
no counterpart in Hermitian systems [63–67]. In particular,
asymmetrical flows in active matter may allow one to
realize the non-Hermitian skin effect [65,66,68] and the
quasiedge modes [67]. Such features could lead to an
emergence of novel functionalities unique to active matter.
We hope that our work stimulates further studies in these
directions.
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