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We show that nonlinear continuum elasticity can be effective in modeling plastic flows in crystals if it is
viewed as a Landau theory with an infinite number of equivalent energy wells whose configuration is
dictated by the symmetry group GLð2;ZÞ. Quasistatic loading can be then handled by athermal dynamics,
while lattice-based discretization can play the role of regularization. As a proof of principle, we study
dislocation nucleation in a homogeneously sheared 2D crystal and show that the global tensorial invariance
of the elastic energy foments the development of complexity in the configuration of collectively nucleating
defects. A crucial role in this process is played by the unstable higher symmetry crystallographic phases,
typically thought to be unrelated to plastic flow.
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Crystal plasticity is the simplest among yield phenomena
in solids [1], yet it has been compared in complexity to fluid
turbulence [2,3]. The intrinsic irregularity of plastic flow
in crystals [4] is due to short- and long-range interaction
of crystal defects (dislocations) [5] dragged by the applied
loading through a rugged energy landscape [6–8]. A
fundamental understanding of plastic flow in crystals is
crucial for improving hardening properties of materials [9],
extending their fatigue life [10], controlling their forming at
submicron scales [11,12], and building new materials [13].
Macroscopic crystal plasticity relies on a phenomeno-

logical continuum description of plastic deformation in
terms of a finite number of order parameters representing
amplitudes of predesignedmechanisms. These mechanisms
are coupled elastically and operate according to friction-type
dynamics [14–18]. The alternative microscopic approaches,
relying instead on molecular dynamics [19–27], can handle
only macroscopically insignificant time- and length scales
[28]. An intermediate discrete dislocation dynamics
approach focuses on long-range interaction of few disloca-
tions, while their short-range interaction is still treated
phenomenologically [29–31]. Collective dynamics of many
dislocations can be also described by the dislocation density
field; however, rigorous coarse graining in such a strongly
interacting system still remains a major challenge [32–39].
A computational bridge betweenmicroscopic andmacro-

scopic approaches is provided by the quasicontinuum finite
element method, which uses adaptive meshing and employs
ab initio approaches to guide the constitutive response at
different mesh scales [40–44]. Its drawbacks, however, are
spurious effects due to matching of finite element repre-
sentations at different scales and the high computational cost

of reconstructing the constitutive response at the smallest
scales [45]. Another important approach is the phase field
method applied to dislocations, where plasticity is again
modeled by a set of scalar order parameters which now
evolve in an infinitely periodic energy landscape and are
coupled to conventional linear [46–51] or nonlinear [52,53]
elasticity. Here the challenge is to correctly account for the
coupling between these order parameters, reproduce the
underlying tensorial periodicity using a scalar framework,
and select the appropriate internal length scales shaping the
structure of the dislocation cores.
In this Letter we propose a synthetic approach dealing

with macroscopic quantities such as stresses and strains,
while accounting correctly for the exact symmetry of the
crystal lattice. Our main assumption is that mesoscale
material elements are exposed to the periodic energy
landscape which resolves lattice-invariant strains including
shears related to slip [54–56]; see Fig. 1. Our approach

FIG. 1. Schematic representation of a lattice-invariant shear and
the associated energy barriers along the simple shear loading path
∇y ¼ 1þ αe1 ⊗ e⊥1 . Alternating minimal-periodicity domains
are marked in gray and white.
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follows the original proposal by Ericksen, that the energy
periodicity in the space of tensors should be made com-
patible with geometrically nonlinear kinematics of crystal
lattices [57–61], with the independent development of the
mathematical formalism by Folkins [62]. This general
program can be viewed as a far-reaching generalization
of the Frenkel-Kontorova-Peierls-Nabarro model account-
ing for energy periodicity along a single slip plane [63–65].
Scalar models with periodic energies, dealing with multiple
slip planes, have been used before to describe dislocation
cores [66–68], to simulate dislocation nucleation [69–72],
and to capture the intermittency of plastic flows [6,73].
Their tensorial versions with linearized kinematics were
considered in Refs. [74–77].
In the proposed kinematically nonlinear 2D theory the

role of the order parameter is played by the metric tensor
(characterizing local deformation), and the bottoms of the
energy wells correspond to lattice-invariant deformations.
The continuum Landau energy density of this type must be
invariant under the (infinite and discrete) symmetry group
GLð2;ZÞ constituted by the 2 × 2 invertible matrices with
integer entries. Since the ground state in this case is
necessarily hydrostatic [58,78], regularization is necessary.
Theories incorporating various elements of the tensorial
GLð3;ZÞ symmetry have already proved useful in the
description of reconstructive phase transitions [56,79–85],
and in this Letter we extend this idea to the modeling of
crystal plasticity proper.
From the perspective of our Landau-type theory with an

infinite number of equivalent energy wells, a plastically
deformed solid can be viewed as a mixture of equivalent
phases which are related by a large “transformation strain”
responsible for localization. Elastically compatible parts of
the boundaries between such phases have no energy cost
and are therefore invisible. The incompatible parts are
represented by dislocations, which generate long-range
elastic strain fields. Plastic yield can then be interpreted
as an escape from the reference energy well and plastic
mechanisms can be linked to low-barrier valleys in the
energy landscape. Friction-type dissipation emerges as a
result of homogenization of an overdamped athermal
dynamics in a rugged energy landscape [86,87]. It is
important to notice that such an approach incorporates
both long- and short-range dislocation interactions; it also
correctly describes plastic slip even though the dislocations
cores are regularized and blurred on the scale of the
unit cell.
In this Letter we use this general approach to study the

peculiarities of collective dislocation nucleation in crystals
with different symmetries and show that there is a nontrivial
coupling between plastic mechanisms due to the presence
of degenerate mountain passes representing lattices with
higher symmetry. The crucial role in the formation of self-
induced plastic disorder is then played by the unstable
high symmetry phases, conventionally thought to be

unrelated to plastic flow. The general conclusion is that
the global crystal symmetry can induce frustration and
become the cause of lattice incompatibility developing
during plastic deformation.
Consider a continuous deformation y ¼ yðxÞ, where y

are actual and x are reference coordinates. The energy
density of an elastic solid can depend on the deformation
gradient ∇y only through the metric tensor C ¼ ð∇yÞT∇y.
To account for all deformations that map a Bravais lattice
onto itself, we require that the strain energy density fðCÞ
equals fðmTCmÞ for any m in GLð2;ZÞ; see [88]. In the
presence of such symmetry, the space of metric tensors C
partitions into periodicity domains, with each one contain-
ing an energy well equivalent to the reference one. If we
know the structure of the energy in one such domain, we
can use, for instance, the Lagrange reduction [85,89] to find
its value at any other point. In the special case of 2D
lattices, which we focus on here, a section detC ¼ 1 in the
3D space of tensors C can be used to visualize the implied
tensorial periodicity of the energy; see Fig. 2. The global
picture is made visible if we map this section onto a
complex half plane using the function z ¼ C−1

11 ðC12 þ iÞ
[61,62]. For instance, the point S1 in Fig. 2, corresponding
on the complex half plane to z ¼ i describes a square
lattice with the basis vectors aligned with the close-
packed directions: e1 ¼ ð1; 0Þ, e2 ¼ ð0; 1Þ. Simple shear
1þ e1 ⊗ e⊥1 , where e⊥1 is a unit vector orthogonal to e1,
maps this point onto its symmetric counterpart iþ 1 (point
S2); another square lattice, corresponding to point S3 in
Fig. 2 with z ¼ 1

2
ð1þ iÞ, can be obtained from the lattice

S1 by the shear 1þ e2 ⊗ e⊥2 . Instead, the point T1 in Fig. 2,
corresponding to z ¼ 1

2
þ ð ffiffiffi

3
p

=2Þi, describes a triangular
lattice (with hexagonal symmetry) whose basis vectors
e1 ¼ γð1; 0Þ, e2 ¼ γð1=2; ffiffiffi

3
p

=2Þ with γ ¼ ð4=3Þ1=4 are
again aligned with the close-packed directions. Its closest
equivalent neighbors are T2 and T4, corresponding to
z ¼ 1

2
þ ð ffiffiffi

3
p

=2Þi� 1. They are reachable from T1 by the
shear deformations 1� e1 ⊗ e⊥1 .
To demonstrate the possibility of yield-inducing insta-

bilities in a material with such energy, it is sufficient to
consider a system under the most constraining affine

FIG. 2. Structure of the GLð2;ZÞ periodicity domains in the
space of metric tensors. (a) Partition of the complex half plane
(Dedekind tessellation). (b) Equivalent partition of the section
detC ¼ 1 of the space C. Points Si represent the same square
lattice, and points Ti the same triangular lattice.
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displacement control. Given the gradient nature of the order
parameter, the (spinodal) instability of a homogeneous state
should be linked to the local loss of rank-1 convexity of the
energy [90,91]. This is equivalent to the loss of positive
definiteness of the acoustic tensor Q with components
Qik ¼ Aijklnjnl, where Aijkl ¼ ∂2f=ð∂jyi∂lykÞ is the
fourth-order incremental elastic tensor, and n is a unit
vector [92,93].
For illustrative purposes we now choose a particular

energy density f ¼ fv þ fd which decouples into a volu-
metric fvðdetCÞ and a distortive fd½C=ðdetCÞ1=2� part.
Since detC is invariant under GLð2;ZÞ, our symmetry
constraints concern only the deviatoric part fd. This
function needs to be specified only inside a single perio-
dicity domain, with the suitable conditions on its boundary
ensuring required smoothness [61,94]. The lowest-order
polynomial representation of fd, which guarantees the
continuity of the elastic moduli, was constructed in
Ref. [85]; for the general nonpolynomial representation
see Ref. [62].
If the reference lattice is either square or triangular, the

minimal potential can be chosen in the form [85]

fdðC̃Þ ¼ βψ1ðC̃Þ þ ψ2ðC̃Þ; C̃ ¼ C=ðdetCÞ1=2 ð1Þ

where ψ1 ¼ I14I2 − 41I23=99þ 7I1I2I3=66þ I32=1056,
and ψ2¼ 4I23=11þ I13I3−8I1I2I3=11þ17I32=528. The
hexagonal invariants here are I1 ¼ 1

3
ðC̃11 þ C̃22 − C̃12Þ,

I2 ¼ 1
4
ðC̃11 − C̃22Þ2 þ 1

12
ðC̃11 þ C̃22 − 4C̃12Þ2, and I3 ¼

ðC̃11 − C̃22Þ2ðC̃11 þ C̃22 − 4C̃12Þ − 1
9
ðC̃11 þ C̃22 − 4C̃12Þ3.

The choice β ¼ −1=4 enforces the square symmetry on the
reference state, while, choosing β ¼ 4, we bias the refer-
ence state toward hexagonal symmetry; the energy land-
scapes in those two cases are illustrated in Fig. 3. The
volumetric energy density will be chosen in the simplest
form fvðsÞ ¼ μðs − log sÞ, which excludes configurations
with infinite compression; the coefficient μ plays the role of
a bulk modulus.
The resulting “yield surfaces” are shown in Fig. 3. To

understand the nature of the associated instabilities,

consider the case in which a simple shear is imposed on
the boundary

∇y ¼ 1þ αe1 ⊗ e⊥1 : ð2Þ

Starting, in the case of square lattice, with the homo-
geneous reference state S1, we find that at instability
point the condition detQ ¼ 0 produces two almost simul-
taneously destabilized directions q ¼ ∇y½n�=j∇y½n�j ¼
ðcos ξ; sin ξÞ: the first one with ξ ≈ −0.11 rad, almost
perpendicular to the deformed e2, and the second one with
ξ ≈ 1.55 rad, almost perpendicular to the deformed e1. The
near degeneracy of the bifurcation is an indicator that two
“slip planes” may be activated. In the case of a triangular
lattice, the instability along a similar loading path origi-
nating at T1 produces a single unstable direction ξ ≈
−1.25 rad which is incommensurate with the lattice. In
this case one can expect only one slip plane to be activated.
Our numerical experiments show that the acoustic-tensor-
based analytical instability conditions are in agreement
with direct numerical simulations.
Consider now a single edge dislocation trapped by the

lattice far from the boundaries. In Fig. 4 we illustrate the
corresponding stress distributionwhichmatches the classical
continuumfar fieldwith r−1 asymptoticswhile also resolving
(at a scale of the mesh) the core region. Matching the
structure of the dislocation core with the results of quantum
mechanical simulations can be used to calibrate the model
parameters [95,96]. In particular, our symmetry requirements
on the potential leave ample room for tuning the quantities
like the dislocation energy and the Peierls stress.
The collective nucleation pattern emerging after a stress

drop is illustrated in Fig. 5 for both types of lattices. The
results are presented in both the configurational space—
Figs. 5(a) and 5(c), where each point corresponds to
a single element of the mesh—and the actual physical
space—Figs. 5(b) and 5(d), where the color of the nodal
points indicates the level of stress. The configurational
points, all located initially at the bottom of the reference

FIG. 3. Energy landscapes corresponding to potential (1) with
(a) β ¼ −1=4 and (b) β ¼ 4. Colors indicate the energy level:
blue, low; red, high. Black lines delimit the zones of linear
stability for the homogeneous states. Green lines correspond to
the simple shear loading paths discussed in the text.

FIG. 4. Single edge dislocation in a square lattice linking the
wells S1 and S2; its Burgers vector is horizontal, with the length
equal to the side of the square unit cell. (a) Finite element nodes
with coloring indicating the level of Cauchy stress σxy. (Inset)
Image of this defect in the configurational space. (b) Stress profile
along the glide plane. (Inset) The far field asymptotics. System
size, 1000 × 1000.
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energy well, disperse as a result of the massive nucleation
event. The ensuing spatial dislocation distribution is qua-
siregular, with pileups at the rigid boundaries. Note the
formation of characteristic entanglements with dislocations
on two slip planes blocking each other (in the case of a
square lattice).
Note that in Fig. 5(a) the square lattice is driven by the

loading device from the reference state S1 toward the
equivalent state S2. At the “yielding” threshold, which
marks the end of the elastic regime, the homogeneous
configuration S1 loses stability and the ensuing pattern
represents (outside the core regions) a mixture of three
“pure” states, S1, S2, and S3. While the appearance of state
S2 is natural because the corresponding “plastic mecha-
nism” is favored by the loading, the main complexity of the
resulting dislocation pattern is due to the emergence of state
S3. This indicates the activation of the second plastic
mechanism, decoupled (in the nonlinear theory) from the
first one.
The appearance of state S3 can be understood if we recall

that the linear stability analysis predicts two almost
simultaneously unstable modes aligned with the slip
directions in the deformed state. While one of these
directions is indeed aiming toward the energy well S2,
the other one, which bifurcates first, is directed toward S3.
Our numerical simulations show that the latter instability
mode grows faster, which can be interpreted, somewhat
counterintuitively, as early stage dominance of the secon-
dary plastic mechanism. The flow of configurational points
passes near the unstable equilibrium state T1, correspond-
ing to a triangular lattice, where it splits into three streams

directed toward the configurations S1, S2, and S3; see
Movie S1 in the Supplemental Material [88].
This behavior becomes more transparent if we consider a

smoother energy potential. Note that the symmetry trans-
formations from GLð2;ZÞ correspond on the upper com-
plex half plane to the fractional (Möbius) transformations
with integral entries of the type ðm22zþm12Þ=ðm21zþm11Þ
[62,94]. This observation links [61,62] the infinitely
periodic energy densities for 2D crystalline materials with
the classical modular functions [97], with the most well-
known example provided by the Klein invariant JðzÞ [98];
see the Supplemental Material for more details [88]. One
can show that, for this holomorphic function JjSi ¼ 1,
J0jSi ¼ 0, while JjTi

¼ J0jTi
¼ J00jTi

¼ 0. Therefore, the
corresponding potentials with the reference square and
triangular lattices can be chosen in the form fdðzÞ ¼
jJðzÞ − 1j (square lattice) and fdðzÞ ¼ jJðzÞj2=3 (triangular
lattice); the exponents are chosen to ensure a nondegenerate
linear-elastic response close to the bottoms of the energy
wells. The energy landscapes and the yield surfaces for
such potentials are qualitatively similar to the ones pre-
sented in Fig. 3.
Note that the choice fdðzÞ ¼ jJðzÞ − 1j for a square

lattice turns the triangular critical point T1 and all of its
symmetric counterparts into degenerate “monkey saddles,”
characterized by the local Taylor expansion of the form
x3 − 3xy2; see Fig. 6(a) and also [99]. The flow of
configurational points directed initially toward such an
unstable state (say, T1) will therefore necessarily split into
three streams directed toward the stable states (say, S1, S2,
and S3).
The situation looks a bit different in the case of the

polynomial energy (1), where the Hessian is nondegenerate
at the point T1, which corresponds in this case to a shallow
energy maximum. However, this maximum is surrounded
by the three nondegenerate saddles R1, R2, and R3
describing rhombic lattices [see Fig. 6(b)], and the general
conclusion about the activation of the secondary plastic
mechanism and the ultimate dispersion over the three
energy wells S1, S2, and S3 remains valid. Note that the
implied coupling of the plastic mechanisms would have to

FIG. 5. Collective dislocation nucleation. (a),(b) Square lattice.
(c),(d) Triangular lattice. We show two representations of the
same phenomenon. (a),(c) In the configurational space, where
green lines are simple shear paths imposed by the loading device
and blue dots indicate the metric tensor distribution among the
elements. (b),(d) In the physical space. Colors indicate the level
of the nodal Cauchy stresses σxy. System size, 200 × 200.

FIG. 6. Level sets of the energy density on the surface detC¼ 1
around the point T1. We use the parametrization C11 ¼ 1=y,
C22 ¼ ðx2 þ y2Þ=y, C12 ¼ x=y. (a) Klein-invariant-based poten-
tial. (b) Polynomial potential (1) with β ¼ −1=4.
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be postulated in the phenomenological plasticity theory
[100–102]; however, it can also be reconstructed from
ab initio calculations [99].
The picture is simpler in the case of a triangular lattice

where the loading (2) from T1 to T2 produces a mixture of
only two pure states, T1, T2; see Fig. 5(d). The latter can be
interpreted as the activation of a single plastic mechanism,
the one favored by the loading; see Movie S2 in the
Supplemental Material [88].
To conclude, our model shows that crystal plasticity

naturally arises from nonlinear elasticity if the tensorial
symmetry of the crystal lattice is properly accounted for.
Athermal evolution in the regularized model of this type can
lead to temporal and spatial complexity, which our analysis
predicts to be highly sensitive to both the crystallographic
symmetry and the orientation of the crystal [103,104]. The
study of a 2D version of the theory highlights the crucial
role played in plastic deformation by the degenerate saddle
points of the energy [99] representing seemingly irrelevant,
unstable crystallographic phases; for similar effects in other
fields see Refs. [105–108]. The development of the
potentials with GLð3;ZÞ symmetry will be necessary to
account for cross slip, stacking faults, Frank-Read sources,
and other crucial features of 3D crystal plasticity.
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