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Hanbury Brown–Twiss interference and stimulated emission, two fundamental processes in atomic
physics, have been studied in a wide range of applications in science and technology. We study interference
effects that occur when a weak probe is sent through a gas of two-level atoms that are prepared in a singly
excited collective (Dicke or “superatom”) state and for atoms prepared in a factorized state. We measure the
time-integrated second-order correlation function gð2Þ of the output field as a function of the delay τ

between the input probe field and radiation emitted by the atoms and find that, for the Dicke state, gð2Þ is
twice as large for τ ¼ 0 as it is for γeτ ≫ 1 (γe is an excited state decay rate), while for the product state, this
ratio is equal to 3=2. The results agree with those of a theoretical model in which any effects related to
stimulated emission are totally neglected—the coincidence counts measured in our experiment arise from
Hanbury Brown–Twiss interference between the input field and the field radiated by the atoms.
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In his 1917 paper [1], Einstein introduced his famous A
and B coefficients, with the A coefficient associated with
spontaneous emission and the B coefficient with either
absorption or stimulated emission (both referred to as
“changes of state due to irradiation” by Einstein). While
there may not be a universal definition as to what
constitutes stimulated emission, any definition describes
processes in which atom-field interactions lead to an
increase in the intensity of an input field. There have been
a number of both theoretical analyses and experimental
implementations involving parametric down-conversion
(e.g., Refs. [2–7]), which have been interpreted in terms
of stimulated emission and/or amplification. In all of these
cases, coincidence counts involving both signal and idler
modes are measured when a single-photon or a weak
coherent probe pulse is sent into a crystal, so that it
propagates collinearly with the signal mode. A twofold
increase in the time-integrated coincidence counts occurs
for overlapping probe and signal field pulses, compared to
the case of nonoverlapping pulses. The increase in coinci-
dence counts was interpreted in terms of probe-induced
stimulated emission in the crystal. The analyses supporting
this assertion are based on a perturbative calculation of the
evolution of the state vector associated with an effective
Hamiltonian involving third-order nonlinear susceptibilities.
We have carried out an experiment that, in some ways, is

analogous to the down-conversion experiments. Instead of
a nonlinear crystal, our active medium consists of a gas of
cold rubidium atoms, Fig. 1(a). Following their release
from an optical trap, the atoms are subjected to an
excitation-deexcitation pulse sequence, leading to phase-
matched emission in the x direction having central fre-
quency ωA. A weak probe pulse having central frequency
ωP is also sent into the sample in the x direction and can be

delayed relative to the phase-matched emission pulse.
The output field, containing contributions from both the
input field and the field radiated by the atoms, is sent to a
beam splitter and coincidence counts are recorded as a
function of the delay time. As in the down-conversion
experiments, we can observe an increase in coincidence
counts by a factor of 2 when the probe field overlaps with
the field radiated by the atoms.
What is the origin of this increase in coincidence counts?

Can it be traced to stimulated emission as is claimed in
down-conversion experiments, or are there other mecha-
nisms at play here? To help answer these questions, we
prepare our atomic ensemble in two distinct fashions, one
involving a single excitation (superatom or Dicke [8] state)
and the other a factorized initial state. We are able to do this
by choosing different Rydberg states in the excitation
schemes. The results are analyzed using source-field theory
[9]. In the case of the Dicke state preparation, there is a
single excitation shared by N atoms and the incoming
probe pulse can drive a stimulated transition between the
Dicke state and the ground state. The coupling strength
between the two collective states is enhanced by a factorffiffiffiffi
N

p
. As a consequence, one might associate the increased

coincidence counts with stimulated emission. On the other
hand, for a factorized initial atomic state, such an inter-
pretation is no longer tenable since the incident probe field
is actually absorbed by the medium. In both cases,
however, an increase in coincidence counts is observed.
We present experimental results and a theoretical analysis
that leads us to conclude that stimulated emission is not
responsible for the increase in coincidence counts. Instead,
the increase in coincidence counts can be attributed to
Hanbury Brown–Twiss (HBT) interference [10], which we
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claim can also explain the increase in coincidence counts
measured in the down-conversion experiments [11].
To illustrate the underlying physics, we consider first a

single-photon probe pulse incident on a two-level atom
(lower level g and excited level e) that is prepared in its
excited state at time t ¼ 0. The wave front of the probe
pulse, which has cross-sectional area A greater than the
square of the pulse’s central wavelength λ, arrives at the
atom at time τ ≥ 0. In source-field theory [12], the positive
frequency component of the field operator for this system

can be written as EþðR; tÞ ¼ Eð0Þ
þ ðR; tÞ þ EðSÞ

þ ðR; tÞ,
where Eð0Þ

þ ðR; tÞ is the free-field operator and EðSÞ
þ ðR; tÞ

is the source-field operator associated with the field
radiated by the atoms in the sample. Two types of
measurements can be envisioned. Either (1) the integrated
field intensity is measured or (2) the time-integrated
number of coincidence counts is recorded as a function
of τ after the field is sent through a beam splitter. The
detection volume is restricted to a small angle in the
forward direction.
For A ≫ λ2, a “weak coupling” approximation can be

made—the interaction between the atoms and the input
pulse can be neglected to lowest order, owing to the fact
that max[Ωp=γe ≪ 1, ΩpTp ≪ 1], where Ωp is the probe
Rabi frequency, Tp is the probe pulse duration, and γe is the
excited state decay rate. It is then rather easy to analyze the
two measurement scenarios, which are sensitive to different
physical processes. The total field can be viewed as a sum
of the collimated input field, the spherical wave sponta-
neously emitted field from the atom, and the field scattered
by the atom.
The integrated field intensity is sensitive to the ampli-

tudes of the three contributions to the total field. Stimulated
emission or absorption is associated with the interference of

the scattered field with the (unperturbed) input field [13].
Whether stimulated emission or absorption occurs depends
on both the spectral width of the input pulse and the time
delay τ. In contrast, the time-integrated number of coinci-
dence counts Nc is insensitive to the relative phase of the
input and source fields—it depends only on field intensities.
Moreover, in the weak coupling approximation, the scattered
field has a negligible effect on the value of Nc. When
measured as a function of τ, Nc exhibits a “bump” for τ ¼ 0
that can then be interpreted as HBT interference between the
input field and the field spontaneously emitted from the
atoms, in exact analogy with the HBT increase in the second-
order correlation function for two independent light sources.
In other words, although both stimulated emission and HBT
interference can be described in terms of interference, they
correspond to fundamentally different physical processes.
The HBT coincidence count bump is not linked to stimulated
emission—it occurs even if the input field is attenuated.
Moreover, in the weak coupling approximation, any absorp-
tion or stimulated emission of the input pulse is negligibly
small—the output field intensity is approximately equal to
the sum of the input and atomic field intensities, considered
as independent sources.
The same formalism can be used to model our experi-

ment involving phase-matched emission from an ensemble
of atoms, Fig. 1(b). The three-level atoms (ground state
jgi ¼ j5S1=2, F ¼ 2, mF ¼ 2i, intermediate state jei ¼
j5P3=2; F ¼ 3; mF ¼ 3i, and Rydberg state jri ¼ jnS1=2;
mJ ¼ 1=2i) are prepared in a phase-matched superposition
of ground and Rydberg states using an excitation pulse of
duration TE ¼ 1 μs, consisting of two counterpropagating
laser pulses E1 and E2 having central wavelengths 780
and 480 nm, respectively. Field E1 drives the jgi ↔ jei
transition with Rabi frequency Ω1 and field E2 drives the

(a) (b)

FIG. 1. Outline of the experiment. (a) Experimental setup: an ultracold atomic gas is prepared in a crossed pair of focused yttrium-
aluminum-garnet laser beams. A pair of lenses focuses E1 and E2 laser fields to drive a two-photon transition from the ground state jgi to
the Rydberg state jri. A retrieval laser pulse ER leads to emission of an atomic field that is split on a beam splitter and directed onto
photodetectors D1 and D2. A probe laser field with controllable frequency and delay is aligned into the spatial mode of the atomic
emission. (b) Three main steps of the protocol: (i) an atomic ensemble is excited into a Rydberg atomic state jri; (ii) after a delay Ts, the
atoms are driven into intermediate state jei, leading to emission on the jei ↔ jgi transition, with propagation direction determined by
the phase-matching condition; (iii) an incoming probe field and atomic emission fields, with controllable delay between the two fields,
are directed toward HBT measurement.
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jei ↔ jri transition with Rabi frequency Ω2. Field E1 is
detuned by an amount δ ¼ −2π × 90 MHz from ωeg. For a
high-n Rydberg state [14], excitation of more than one
atom into the Rydberg state can be suppressed, with the
atomic ensemble being coherently driven between the
collective ground state jGi and a singly excited (so-called
superatom) collective state jRi at a frequency ΩN ¼ffiffiffiffi
N

p
Ω1Ω2=ð2δÞ [15–20]. After a delay Ts ≈ 0.5 μs follow-

ing the excitation pulse, a readout pulse ER, centered at
480 nm is applied that is resonant with the jri ↔ jei
transition frequency and leads to phase-matched emission
with ωA ¼ ωeg.
Figure 2(a) displays the probability of photoelectric

detection P as a function of two-photon detuning Δ2

between ðωE1
þ ωE2

Þ and ωrg. The maximum probability
of a photoelectric detection per trial is Pmax ≈ 2.5 × 10−2

for a chosen value of θ≡ΩNTE ≃ π. Figure 2(b) shows P
as a function of θ. Accounting for a factor of ζ ¼ 0.27
transmission and detection efficiency, there is a maximum
probability pf ≈ 0.09 for a single photon to be emitted into
the spatial mode defined by the single-mode fiber used for
collection. A probe pulse whose temporal profile matches
that of the phase-matched emission, and whose spatial
mode corresponds to the detector acceptance mode, is also
sent into the medium. In the absence of any Rydberg
excitation, the transmission coefficient for the probe pulse
is 0.45� 0.01. Figure 2(c) shows measured intensity
profiles (normalized photocounts M̃ vs time t) for the
probe pulse and the phase-matched atomic emission. The
profiles are matched by adjusting both the readout and
probe pulses, with their overlap integral being 0.94 for a
0.5 μs integration window and greater than 0.98 for a
0.1 μs integration window centered on their peak values.
The value of the time-integrated second-order correlation
function for atomic emission in the absence of the probe

pulse is gð2ÞA ¼ 0.04. The probe pulse can be delayed by a
time τ relative to the phase-matched emission and the probe
frequency ωP can be detuned by an amount Δ from ωA.
The total output field is sent into a beam splitter

and detectors in the output mode of the beam splitter
record coincidence counts. In the weak coupling approxi-
mation, any contribution to coincidence counts due to
stimulated emission constitutes a small effect, of order
1=ðNk20AÞ ≃ 10−6, where k0 ¼ ω21=c and A is the cross-
sectional area of the probe pulse. In fact, instead of being
amplified by the medium, the output field intensity in the
presence of Rydberg excitation is actually decreased
by ≃10−2.
The probe pulse is a weak, coherent state pulse having

energy less than or of order ℏωeg. The atoms are prepared
either into (1) a state consisting of a single phase-matched
excitation by choosing an upper atomic state jri ¼ j87S1=2i
with strong interactions [21–23], or (2) an upper atomic
state jri ¼ j50S1=2i, which leads to a factorized atomic
state having on average Nr ≈ 1.5 Rydberg excitations
in the sample. In case (1), assuming that the spatial profiles
of the probe and phase-matched emission pulses are
identical, the number of photocounts separated in time
by t21 is given by

Ncðt21Þ ¼
Z

∞

−∞
dtĨðtÞĨðtþ t21Þ½1þ V1ðKÞ cos ðΔt21Þ�;

ð1Þ
where ĨðtÞ is proportional to the intensity profile of the
probe field, K is the ratio of integrated intensities for
the input probe pulse and phase-matched emission, and

V1ðKÞ ¼ 2K=ðK2 þ 2K þ gð2ÞA Þ is the fringe visibility,

allowing for a nonzero value of gð2ÞA . As was the case for
a two-level atom, Eq. (1) is derived assuming that atom-
field interactions are negligibly small, that is, no effects

(a)     (b)               (c)

FIG. 2. Probing a collective (superatom) state. (a) Probability of photoelectric detection event per trial P as a function of two-photon
detuning Δ2 ¼ ωrg − ðωE1

þ ωE2
Þ for the Rydberg state jri ¼ j87S1=2i. The solid curve is a Lorentzian fit. The 0.8 MHz (FWHM)

width of the peak is determined by the 1 μs excitation pulse duration. (b) P as a function of the collective Rabi angle θ displaying a
period of a many-body (superatom) Rabi oscillation. The solid curve is a theory curve for a collective Rabi oscillation with Ω2=2π ¼
1.5 MHz and Ω1=2π varied between 2 and 20 MHz. The best fit between theory and the data occurs for the number of atoms N ¼ 234.
(c) Normalized photocounts M̃ as a function of time t for the probe pulse (red) and the atomic emission (blue). The error bars represent
� one standard deviation (

ffiffiffiffiffi
M

p
) for M photoelectric counting events.
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related to stimulated emission are included. In Fig. 3(a), we
plot measured values of Ncðt21Þ for K ¼ 0.21. The theory
curve is obtained assuming a Gaussian profile for ĨðtÞ and
an expected value of V1ð0.21Þ ¼ 0.83.
The normalized time-integrated coincidence counts are

given by

Nc ¼ 1þ 2KjJj2=½K2 þ 2K þ gð2ÞA �; ð2Þ

where J ≡ R
∞
−∞ e−iΔtSðt − τÞfðtÞdt is an overlap integral

of the two fields, and SðtÞ and fðtÞ are the (real) scaled
amplitudes of the phase-matched and probe fields,
respectively, normalized such that

R∞
−∞ dtS2ðtÞ ¼ 1,R∞

−∞ dtf2ðtÞ ¼ 1. In this case, we allow for a slight differ-
ence between the intensity profiles of the probe field and
atomic emission. If the intensity envelopes are identical and

if K ≪ 1 and gð2ÞA ≪ 1, the time-integrated coincidence
counts are doubled provided Δ ¼ 0 and τ ¼ 0, from the
case where jΔj=γe ≫ 1 or γeτ ≫ 1.
In Fig. 3(b), Nc is plotted as a function of Δ for τ ¼ 0

and Nc is plotted as a function of τ for Δ ¼ 0 in Fig. 3(c).
Equation (2) is strictly valid only under an assumption
of an optically thin medium in which the fraction of energy
radiated by the atoms in the phase-matched direction
pf ≪ 1. Including corrections of order pf ≈ 0.06,
we estimate the value of Nc ≃ 1þ 2ð1 − pfÞKjJj2=
ðK2 þ 2K þ gð2ÞA Þ. In Figs. 3(b) and 3(c), the theoretical

curves are drawn using fK ¼ 0.46; jJðΔ ¼ 0Þj2 ¼ 0.98g
[NcðΔ ¼ 0Þ ¼ 1.72] and fK ¼ 0.35; jJðτ ¼ 0Þj2 ¼ 0.94g
[Ncðτ ¼ 0Þ ¼ 1.72], respectively.
When a Rydberg blockade is operative, the problem can

be reduced to an effective two-level problem involving
transitions between the Dicke state and the ground state.
As such, it is possible to envision a situation in which there
is total inversion of the system. Although the probe field
can produce stimulated emission on the inverted system,
the observed factor of 2 increase in coincidence counts is
not a consequence of stimulated emission. Rather, it is an
indication of both the nonclassical nature of the atomic
Dicke state and HBT interference.
As further evidence of the fact that the increase in

coincidence counts results from HBT interference and not
stimulated emission, we next consider a factorized initial
atomic state for which gð2Þ ¼ 1 and there is no inversion.
Assuming that there is no temporal coherence between the
input pulse and the phase-matched emission and that
fðtÞ ¼ SðtÞ, Ncðt21Þ is given by

Ncðt21Þ ¼
Z

∞

−∞
dtĨðtÞĨðtþ t21Þ½1þ V2ðKÞ cos ðΔt21Þ�;

where V2ðKÞ ¼ 2K=ð1þ KÞ2 is the fringe visibility.
In Fig. 4(a), we plot values of Ncðt21Þ for the Rydberg
state jri ¼ j50S1=2i and with K ¼ 0.98. The solid curve is
theory, with fringe visibility V2ð0.98Þ ≈ 0.50. The fringe

(a)                                      (b)                           (c)

FIG. 3. Two-photon statistics for the upper atomic state jri ¼ j87S1=2i. (a) Coincidences in a 2-ns window Ncðt21Þ as a function of t21
for detuning Δ=2π ¼ −80 MHz between the probe field and the field emitted by the atoms. (b) Normalized integrated coincidences Nc
as a function of the detuning Δ between the probe pulse and the pulse from the ensemble. (c) Nc as a function of the delay τ between the
probe pulse and the pulse from the ensemble. Solid curves in (a)–(c) are obtained using our theoretical model.

(a)                                    (b)                            (c)

FIG. 4. Data and curves analogous to those shown in panels (a), (b), and (c) of Fig. 3, but for the upper atomic state jri ¼ j50S1=2i.
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visibility of 1=2 is consistent with HBT interference
between two coherent-state pulses, a situation that is
mirrored by our choice of a factorized atomic state and
a coherent-state probe pulse. For K ¼ 1, the normalized
time-integrated coincidence counts are given by Nc ¼
1þ 1

2
jJj2. It is seen that, in this case, for fðtÞ ¼ SðtÞ,

the time-integrated coincidence rates are increased by a
factor of 3=2 provided Δ ¼ 0 and τ ¼ 0, from the case
where jΔj=γe ≫ 1 or γeτ ≫ 1. Figures 4(b) and 4(c) show
Nc as a function of pulse detuning and delay, respectively,
together with theory curves for which the enhancement
factor Nc ≃ 1þ 2ð1 − pfÞjJj2K=ð1þ KÞ2. In Figs. 4(b)
and 4(c), the theoretical curves are drawn using fK ¼
0.90; jJðΔ ¼ 0Þj2 ¼ 0.97g [NcðΔ ¼ 0Þ ¼ 1.46] and fK ¼
1.00; jJðτ ¼ 0Þj2 ¼ 0.93g [Ncðτ ¼ 0Þ ¼ 1.44], respec-
tively. Again, although stimulated emission is negligible,
there is an enhancement in coincidence counts when the
probe pulse overlaps with the phase-matched atomic
emission.
In conclusion, the interaction between the incident probe

field with the atoms experiments such as ours and in
Refs. [2–7] can be treated in a weak coupling approxima-
tion. In that limit, the increase in coincidence counts can be
fully described by HBT-type interference between the
incident field and the field radiated by the medium.
There is no direct connection with stimulated emission.
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