
 

Noncritical Slowing Down of Photonic Condensation
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We investigate the response of a photonic gas interacting with a reservoir of pumped dye molecules to
quenches in the pump power. In addition to the expected dramatic critical slowing down of the equilibration
time around phase transitions, we find extremely slow equilibration even far away from phase transitions.
This noncritical slowing down can be accounted for quantitatively by fierce competition among cavity
modes for access to the molecular environment, and we provide a quantitative explanation for this
noncritical slowing down.

DOI: 10.1103/PhysRevLett.123.203602

The timescales of evolution of simple dynamical systems
are typically directly related to system parameters. By
contrast, systems with many degrees of freedom can exhibit
emergent behavior, with dynamics on timescales that have
no clear origin in the microscopic equations of motion. A
prominent example is the relaxation towards a steady state
which is known to slow down when a system is close to a
critical point [1,2]. This critical slowing down is present in
the statistical mechanics of systems from atomic quantum
gases [3] or magnetic metamaterials [4] to entire ecosys-
tems or human societies [5].
The slowing down of system dynamics goes hand in

hand with an increase in the amplitude of the fluctuations in
both classical [6] and quantum statistical systems [7]. Close
to criticality, fluctuations and dynamics become linked,
and the system behavior can be characterized by critical
exponents [1,8]. In this respect, critical slowing down is a
very different phenomenon from other delayed-equilibrium
phenomena such as prethermalization of isolated quantum
gases [9] or light [10], and Anderson localization [11].
Noncritical slowing down is typically related to the inte-
grability of the dynamical variables or to the kinetic
impossibility of exploring the full state space available,
and therefore not directly linked to fluctuations.
In this Letter, we investigate the slowing down of

equilibration in a photonic gas in a pumped, dye-filled
optical microcavity. Far from critical pump parameters, the
response of the photon populations to abrupt changes in
pumping has been shown experimentally to occur on
timescales typical for the absorption of a cavity photon
by a dye molecule [12,13]. The fluctuations of photon
numbers [14] and the phase of a Bose-Einstein condensate
[15,16] have been observed to occur on similar timescales.
Here, we find both critical and noncritical slowing
down. Unusually, the noncritical slowing down does not
appear to be related to an impossibility of exploring the

state space but rather to a detailed balance of excitations
being exchanged between photon modes and partially
overlapping subsets of the dye molecules. Furthermore,
it is connected to an inversion of an important susceptibility
of the system (derivative of photon number in a specific
mode with respect to pump power), implying a very
unusual relationship between equilibration and fluctuation.
The system dynamics is described well in terms of rate

equations for the occupations ni of cavity modes and a
vector f characterizing the inhomogeneous fractional
excitation of all dye molecules [17]. A suitable construction
of collective modes of molecular excitations [18] enables
the reduction of the molecular environment to its most
relevant degrees of freedom. To this end, the vector f is
decomposed into a hierarchy of several components fj ¼
Pjf with suitably defined projectors Pj. By construction
the cavity dynamics depends only on the level-0 compo-
nent f0, and the level-(jþ 1) component fjþ1 affects the
cavity dynamics only indirectly via its influence on the
level-j component fj. A truncation after two or three levels
provides an excellent description of the system dynamics
with substantial gain in numerical efficiency [18].
The level-0 component f0 can be expanded into a set of

vectors ei such that the equation of motion [17,18]

_ni ¼ ½niðEi þ AiÞ þ Ei�civi − γini ð1Þ

for each occupation number ni of a cavity mode depends
only on the single component vi ¼ eTi f0 of the molecular
environment. The corresponding coupling constant ci reads
ci ¼

P
j gijMj½ei�j, where gij is the coupling constant

between cavity mode i and a dye molecule at position j;
Mj is the number of molecules in the small volume element
around this position, and ½ei�j is the element j of the vector
ei. Ai and Ei are the rates of absorption and emission of a
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dye molecule, and γi ¼ Ai
P

j gijMj þ κ is the decay
constant, including the cavity decay rate κ.
The equations of motion for the excited state fractions of

molecules fj read

_fj ¼
X

k

X

i

niPjBiPkfk − B0fj − Pjx; ð2Þ

in terms of the diagonal matrices Bi with diagonal
elements ½Bi�pp ¼ −ðEi þ AiÞgip, the matrix B0 ¼P

i BiEi=ðEi þ AiÞ þ ðΓ↓ þ PÞ1, the vector x with ele-
ments ½x�j ¼ PþP

i gijAini, the pump rate P, and the
decay constant Γ↓ for nonradiative decay or emission into
free space [17,18].
This approach allows us to investigate the equilibration

of the light in the cavity after quenches in pump power.
Strictly speaking, a steady state is reached only asymp-
totically, but in practice, one can accept small deviations
and thus define a finite time to reach stationarity. We deem
stationarity to be reached if the difference between pop-
ulations of current state and exact steady state reaches a
specified fraction of the exact steady state population for
each mode of the cavity. The specification of this fraction is
largely arbitrary; we chose a value of 10−6, and a different
choice would result in an overall change of timescale.
We consider a two-dimensional cavity with parabolic

mirrors and harmonic oscillator eigenmodes labeled with
the double index i ¼ ½mx;my�. We take into account the
lowest five energy levels, corresponding to 15 photonic
cavity modes. In the Supplemental Material [19] we show
that the numerical results for these parameters are unchanged
for larger numbers of modes with a fixed number of
molecules. Expressing all system parameters in units of
cavity decay constant κ and the harmonic oscillator length
lho, we use a molecular density of 1013=l2ho, Mj ¼ 1012

molecules in each group and a molecular decay rate
Γ↓ ¼ κ=4; the absorption and emission rates are A½mx;my� ¼
10−12κ½3.8; 9.2; 23.0; 55.4; 124.9�mxþmy

, and E½mx;my� ¼
10−10κ½5.6; 6.8; 8.2; 9.3; 10.0�mxþmy

, respectively, matching
that of rhodamine 6G.
In order to analyze the equilibration time,we start with the

system in its stationary state at a given pump power and then
increase the pumppowerwith a quench of 1%. Figure 1 (top)
shows the time taken to reach the steady state after this
quench as a function of postquench pump power; the bottom
panel shows the corresponding steady state population in
each mode at the final pump power. One can see clear peaks
in equilibration time at pump powers at which cavity modes
condense or decondense. The intervals below and between
the phase transitions seen in Fig. 1 (top) are labeled by letters
A toE. In the intervalsA toC, the equilibration time is about
a factor of 10 larger than the cavity decay time 1=κ. In
interval D, however, the equilibration time does not reduce
to the values found in A toC, and interval E features a broad

plateau of the equilibration time, more than an order of
magnitude larger than the base value around 10=κ. We
explicitly verify that this plateau extends to pump rates
reaching 103κ, and that for parameters where a further
condensation peak is observed, the noncritical slowing is not
dependent on the tails of a subsequent condensation peak
(see the Supplemental Material [19]).
Critical slowing down around phase transitions is well

known [3–5], and we find that all four phase transitions are
characterized by the same critical exponent of 1, i.e., a
divergence of the equilibration time ∝ jP − Pcj−1 as the
pump power P reaches its critical value Pc. In contrast to
this well-known critical slowing down, however, the
increase of equilibration time in D and E is not associated
with any phase transition. To the best of our knowledge,
such noncritical slowing has never been observed, and
quite strikingly the timescale of more than 102=κ does not
match any of the natural timescales of the system.
Both the fast and the slow equilibration times can be

explained in terms of Eq. (1). Photons are being lost from the
system with rate κ, and since the exchange of photons
between cavity and environment is faster than this loss
process, the system relaxes to the new steady state with a
decay constant close to κ after the change in pump power.
Assuming an exponential decay, the relative deviation δni
from the steady state has decayed to a value ofd after the time
te satisfying δni expð−κteÞ ¼ d. With the value of δni ¼ 2%
thatwe find for a quenchby1%sufficiently far away from the
phase transitions, and the threshold d ¼ 10−6, one would

FIG. 1. Top: time taken for the system to equilibrate after a
quench in pump power by 1%, as a function of the pump power
after the quench. Bottom: steady state populations ni of cavity
modes i ranging from [0, 0] to [1, 2] and [0, 3]. The mode
populations feature sharp increases and drops under increase of
pump power, and the equilibration times show clear peaks around
those phase transitions. In addition to this, the equilibration is also
strongly slowed down in the intervals labeled D and E far away
from any known phase transition.
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thus expect an equilibration time of te ¼ − lnð5×10−5Þ=κ ≃
10=κ which matches the observed values very well.
The slowing down of equilibration time can be attributed

to the fact that the molecular excitation vi remains close to
its critical value despite the quench in pump power. If this is
the case, it is convenient to reexpress Eq. (1) as

_ni ¼ −ðEi þ AiÞðvci − viÞni þ Eivi; ð3Þ

in terms of the critical excitation vci ¼ γi=ðEi þ AiÞ for
which the stationary state solution of Eq. (1) diverges. If vi
remains constant, one can understand ηi¼ðEiþAiÞðvci −viÞ
as the effective decay rate, and whenever the dye excitation

vi approaches its critical excitation v
ðcÞ
i , the effective rate ηi

becomes minute and the dynamics of mode i slows down.
Consistent with critical slowing down, the condition vi ≲

vðcÞi is typically satisfied close to a phase transition, even
after a quench in pump power. Far away from a phase
transition, any quench in pump power causes vi to differ
substantially from its critical value so that regular equili-
bration on the timescale κ applies, but as one can see in
Fig. 1 this does not hold in the intervals D and E.
In order to understand why the excitations v½0;1� in the

molecular environment that are accessible to the cavity
mode [0, 1] hardly react to quenches in pump power in the
intervals D and E, but not in any of the other intervals, one
has to inspect the effect of clamping caused by the
condensed modes. Given the macroscopic occupation of
condensed modes, the coupling between those modes and
the molecular environment is extremely strong. If this
coupling is so strong that the interaction between a
molecule and the external pumping becomes negligible,
this molecule will not increase its excitation as pumping is
increased, and it is considered to be clamped to the
condensed mode [17,20].
The mode vectors ei that describe the spatial excitation

profile to which the modes i couple, share similarities with
the spatial profile of the cavity modes, as one can see in
Fig. 2, where the mode profiles for the three lowest
eigenstates of a harmonic oscillator and the corresponding
excitation profiles ei are depicted. Since those profiles
coincide with one-dimensional cuts through the excitation
profiles e½0;i�, Fig. 2 provides a physical picture of how
clamping causes slow equilibration in D and E, but not in
the other intervals depicted in Fig. 1. Crucially, unlike the
photonic cavity modes, the excitation profiles are not
mutually orthogonal, and their dynamics are coupled as
described by Eq. (2). This means that a cavity mode can
clamp other excitation profiles as well as its own. As one
can see, the cavity mode profile of the mode [0, 1] has two
maxima around which it couples strongly to the molecular
environment (opaque regions G1 in Fig. 2). The mode [0, 0]
couples strongly in the region C0 between those maxima,
and the mode [0, 2] couples strongly between and outside
those two maxima as indicated by C2. There are thus

regions in which the competition between mode [0, 1] and
the modes [0, 0] and [0, 2] for access to the excitations of
the dye molecules is particularly strong. In the intervals B
andC, where mode [0, 0] is condensed, the molecules in C0
—in particular in the overlap with G1—can become
clamped, but the molecules outside the maxima can still
change their excitation sufficiently well in response to a
quench in pump, to allow for equilibration on the regular
timescale. In the intervals D and E, mode [0, 2] can also
contribute to the clamping, so that the molecules on both
sides of the relevant domain—including the overlap
between G1 and C2—are being clamped. This then results
in the stabilization of v½0;1� close to vc½0;1� and the corre-

sponding slow equilibration, even though the driving pump
has good overlap with all molecular excitation profiles.
In order to substantiate that Eq. (3) indeed describes well

the slow equilibration, stronger quenches than 1% are more
informative, since these will result in pronounced dynamics
of the cavity excitation which allows for stringent com-
parison with the analytic prediction. Figure 3 shows in
detail the dynamics of a slow equilibration process result-
ing from an increase in pump power by 3 orders of
magnitude. One can see that the population n½0;0� of the
ground-state mode grows monotonically as result of
the quench and that it reaches its new steady state on
the timescale 10=κ. The population n½0;2� also reaches its
new steady state quickly, though not monotonically. The
population n½0;1� of the first excited mode rapidly grows to a
value 14 orders of magnitude larger than its stationary

FIG. 2. Moduli squares jΦiðxÞj2 for i ¼ 0, 1, 2 of the three
lowest eigenfunctions of a quantum harmonic oscillator are
depicted in red. The corresponding harmonic potential and lines
indicating the eigenenergies are depicted in grey. The excitation
profile functions eiðxÞ corresponding to each of these cavity
modes are depicted in blue. Green bars (C0 and C2) approximate
one-dimensional cuts through the areas in which modes [0, 0] and
[0, 2] compete for excitations and clamp molecules when
condensed. Yellow bars (G1) denote the approximate locations
of molecules absorbing photons from or emitting photons into
mode [0, 1]. Mode [0, 1] experiences competition through the
whole of G1 with either [0, 0] or [0, 2].
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value, but then reaches its new steady state on a substan-
tially longer timescale. In the time window between 10=κ
and 103=κ the decay is approximately algebraic ∝ t−

3
2. The

inset depicts dynamics on a timescale 2 orders of magni-
tude larger than the main figure, and confirms the sub-
sequent exponential decay predicted by Eq. (3) with v½0;1�
taken from the stationary solution. The nearly perfect
agreement with the simulated data over 7 orders of magni-
tude strongly supports the explanation of slow equilibration
resulting from the close-to-critical value of v½0;1�.
The situation depicted in Fig. 3 is not specific to the

chosen values of the pump power, but rather generic, as one
can see in Fig. 4, where the equilibration time is shown as a
function of pump power before and after a quench. The
vertical lines separating the intervals A to E show that the
equilibration time around phase transitions is slow, inde-
pendent of the initial state. Also equilibration within the
intervals A, B, and C is fast for any initial pump power.
Equilibration in the intervalsD and E is always slow, and it
tends to be slower in E than in D consistent with the
reaction to the small quenches depicted in Fig. 1. Quite
surprisingly, however, the equilibration time for a post-
quench state inD or E does depend on the initial conditions
to some extent. In particular, for initial conditions in B,
equilibration is less slow in E, and particularly slow in D.
This can be attributed to the fact that, after a quench from
initial conditions in A, mode [0, 1] gains macroscopic
occupation of approximately 1013 before being clamped by
modes [0, 0] and [0, 2], as shown in Fig. 3. After a quench
from phase B, however, mode [0, 0] is already

macroscopically occupied and immediately clamps mode
[0, 1], which only attains a population of 107 before being
clamped by modes [0, 0] and [0, 2]. This reduction in the
population of mode [0, 1] reduces the time taken to decay to
the steady state in E, but increases the time taken to reach
the macroscopic occupation of region D.
This effect can also be exploited in order to arrive at

steady states faster than with a simple quench. Starting with
a pump power corresponding to interval A, for example,
and quenching to interval E will require an equilibration
time about a factor of 2 longer than with a quench to
interval B followed by a quench to interval E after a short
delay. This effect is just a first signature of the vast potential
that temporally modulated pumping has for the control of
nonequilibrium phases of light. Varying pump powers
without waiting for full equilibration will give access to
the interplay of dynamics on fundamentally different
timescales that can, for example, be used to let undesired
features decay while desired features are protected by slow
decay times. Together with the ability to change the
effective interactions between different cavity modes in
terms of suitably shaped cavity modes [21] this opens
entirely new avenues towards the creation of tailored states
of light with abundant applications such as quantum
simulations or precision sensing. These ideas are by no
means limited to bright sources of light, as considered here,
but it applies equally well to systems with microfabricated
cavities that support condensation of a few tens of photons
[22] or even below ten photons [15]. In such systems,
suitably chosen temporal profiles of pumping can also be
used to explore quantum states with variable intermode

FIG. 3. Mode populations as a function of time after a quench
in pump power from 3.16 × 10−4κ to 2.5 × 10−1κ. Modes [0, 0]
and [0, 2] reach their new steady state on a timescale of 10=κ, but
equilibration of mode [0, 1] is about 3 orders of magnitude
slower. The dotted line depicts the analytic prediction of Eq. (3),
that matches the simulated data very well over a range of 7 orders
of magnitude. In this case, the equilibration time is determined by
the dynamics of mode [0, 1].

FIG. 4. Time taken to reach steady state after the pump power is
changed from the value indicated at the left to the value depicted
at the bottom of the figure. The axes also depict the stationary
state populations for the lowest three cavity modes as also shown
in Fig. 1 and the division into intervals A to E. One can see a clear
enhancement of equilibration time close to the phase transitions,
but also in the interval D and E of postquench pump power.
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correlations and coherence properties and the suppressed
interaction with the molecular environment identified here
can protect such nonclassical states against decoherence
and decay.
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