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We theoretically propose an all-optical scheme for generation of isolated electron pulses with
subfemtosecond durations for ultrafast electron microscopy and diffraction. The scheme is based on
simultaneous longitudinal and transverse momentum modulation of freely propagating electrons at two
distinct frequencies via ponderomotive interaction with tailored light fields of three phase-controlled laser
pulses in vacuum. After a drift distance, an attosecond electron pulse train is formed with the individual
pulses displaced in the transverse direction. Spatial filtering of the electron beam by an aperture leads to
isolation of an individual attosecond pulse with a duration of <100 as. Subfemtosecond isolated electron
pulses will enable direct space-time imaging of attosecond electronic dynamics in atoms, molecules, and
solids with atomic spatial resolution, allowing us to directly observe phenomena such as electron tunneling
or electron-electron interaction in strong laser fields of few-cycle laser pulses.
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In recent years, attosecond science has revolutionized the
fields of time-resolved spectroscopy and imaging [1–3].
Using attosecond pulses of electromagnetic radiation in
an extreme ultraviolet (XUV) spectral region, electronic
dynamics in various physical systems can be observed
directly in the time domain [4,5]. However, direct imaging
with atomic spatial resolution is not possible due to the
wavelength of XUV photons, which is approximately
hundred times larger than the interatomic distances. This
limitation is removed when employing electrons with
picometer de Broglie wavelengths for probing ultrafast
dynamics via ultrafast electron diffraction or microscopy
[6–11]. Temporal resolution of free electron-based imaging
techniques is limited by the shortest achievable duration of
electron pulses. Because of the dispersion of electron
propagation velocity in vacuum, the shortest pulses gen-
erated directly by photoemission and static acceleration
(without any additional compression) have durations of the
order of 100 fs or more [12–14] allowing us to observe
atomic motion, but the electronic dynamics occurring on
attosecond timescales is not accessible.
Compression of freely propagating electron pulses via

their interaction with optical fields has recently enabled
reaching subfemtosecond electron pulse durations [15–17].
The longitudinal component of electron momentum can be
modulated at optical frequencies either via the interaction
with optical near fields of various nanostructures [18–20],
longitudinal field inhomogeneity at thin dielectric or metallic
films [15,16,21,22], or via ponderomotive interaction with
an optical traveling wave [17,23–25]. After a drift distance,
the longitudinal momentummodulation transfers to a density
modulation due to dispersion of the electron group velocity
in vacuum, and pulses with durations of several hundreds of
attoseconds are formed [15–17]. In all of the compression

schemes, the initial electron pulse duration is typically longer
than the longitudinal modulation period and an attosecond
electron pulse train with equidistant pulses is formed.
Generation of isolated attosecond electron pulses via two-
stage compression with the first stage based on radio
frequency (rf) or THz cavity and the second stage driven
by optical fields have been proposed [16,17,26]. However,
the two-stage compression is technically challenging and the
generation of isolated attosecond electron pulses using this
technique has not been realized hitherto.
In this Letter we introduce an all-optical scheme, which

allows us to directly select one of the attosecond pulses
from the generated pulse train for time-resolved experi-
ments. The principle is based on a synchronous ponder-
omotive interaction between the electrons and optical
traveling waves formed by three laser pulses at different
frequencies. The interaction introduces simultaneously a
high frequency modulation of the electron energy or
longitudinal momentum and a low-frequency transverse
momentum modulation. The individual pulses in the
electron pulse train are displaced in the transverse direction
by a distance, which is larger than the electron beam
diameter and spatial filtering by an aperture leads to
selection of a single electron pulse from the train.
The layout of the proposed scheme is shown in Fig. 1(a).

The electron pulse propagates horizontally and passes
through the foci of three laser beams intersecting the
electron beam under specific angles of incidence α, β,
and γ. Polarizations of all three laser pulses are linear and
point in the direction perpendicular to the plane of incidence
(along the y coordinate).
The resulting light intensity distribution can be decom-

posed into three components, whose effect on the electron
beam can be treated independently. The first synchronous

PHYSICAL REVIEW LETTERS 123, 203202 (2019)

0031-9007=19=123(20)=203202(6) 203202-1 © 2019 American Physical Society

https://orcid.org/0000-0002-6317-7079
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.203202&domain=pdf&date_stamp=2019-11-13
https://doi.org/10.1103/PhysRevLett.123.203202
https://doi.org/10.1103/PhysRevLett.123.203202
https://doi.org/10.1103/PhysRevLett.123.203202
https://doi.org/10.1103/PhysRevLett.123.203202


traveling wave (its propagation velocity equals to the
electron initial velocity) is generated by the beams at
frequencies ω1 and ω2. The frequencies ω1 and ω2 and
angles of incidence α and β are such that the energy and
momentum conservation laws are fulfilled for purely
longitudinal momentum modulation of the electrons (in
the direction of the electron beam propagation) [25]. This
can be expressed by the conditions

ω1 sin α ¼ ω2 sin β;

cos β ≅
ðβ0 − β−10 Þω2

1 − ðβ0 þ β−10 Þω2
2 þ 2ω1ω2β

−1
0

2ω2ðω1 − ω2Þ
;

ð1Þ

where β0 is the electron initial velocity in units of speed of
light c. The second term of Eq. (1) is obtained from
Ref. [25] by assuming 2ℏðω1 − ω2ÞΓ=½m0c2ðΓ2 − 1Þ� ≪ 1,
where Γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β20

p −1.
The second synchronous traveling wave, which serves

for transverse streaking at lower frequency, is produced by
the beams at frequencies ω2 and ω3, where jω3 − ω2j ≪
jω1 − ω2j. The angle of incidence of the third beam γ is
chosen to reach the synchronicity between the propagation
velocity of the second optical traveling wave and the
electron velocity as

cos γ ¼ ω2 cos β − ðω2 − ω3Þβ−10
ω3

: ð2Þ

However, the condition for purely longitudinal momen-
tum transfer is not fulfilled here leading to a transverse
force dependent on the electron injection phase. The third
wave produced by the beams at frequencies ω1 and ω3 is
not synchronous with the electrons and the momentum
change of the electrons averages to zero over the time of
the interaction. The snapshot of the intensity distribu-
tion of the two synchronous optical traveling waves
propagating in the z direction in time t ¼ 0 is shown
in Fig. 1(b).
To obtain an analytical formula for the ponderomotive

potential of the two synchronous waves in the electron
rest frame we write the electric field of the three light
beams intersecting with the electron beam under angles
α, β, and γ as

E1ðx; z; tÞ ¼ ŷE10 cos

�
ω1t−ω1z cosα

c
þω1x sinα

c
þφ1

�
;

E2ðx; z; tÞ ¼ ŷE20 cos

�
ω2t−ω2z cosβ

c
þω2x sinβ

c

�
;

E3ðx; z; tÞ ¼ ŷE30 cos

�
ω3t−ω3z cos γ

c
−ω3x sin γ

c

�
; ð3Þ

where E10, E20, and E30 are electric field amplitudes of the
individual beams, ŷ is the unit vector in the y direction, and
φ1 is the initial phase shift of the first wave. Ponderomotive
potential in the subrelativistic interaction regime [Γ ≈ 1 and
a0 ¼ eE0=ðm0cωÞ ≪ 1, where e is the electron charge
and m0 is the electron rest mass] can be expressed as
Up ¼ ½e2=ð4m0ω

2Þ�jEj2 ¼ ½e2=ð2m0ω
2ε0cÞ�I. The ponder-

omotive force acting on the electrons is then Fp ¼ −∇Up.
The distribution of light intensity of the synchronous wave
in the coordinate system traveling at the initial electron
velocity β0 obtained from the set of Eqs. (3) (when omitting
constant terms that do not contribute to the ponderomotive
force) can be written as

(a)

(b)

FIG. 1. (a) Layout of the proposed experimental setup for
generation of isolated attosecond electron pulses. Three laser
pulses at different frequencies ω1, ω2, and ω3 are intersected with
a pulsed electron beam traveling in z direction under angles α, β,
and γ. (b) The intensity distribution of the synchronous optical
traveling waves copropagating with the electrons given by
Eq. (4). Dashed and dotted lines indicate the maxima of the
intensity modulation in the longitudinal and the transverse
directions, respectively.
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Iðx0; z0Þ ≈ E10E20 cos

�ðω1 cos α − ω2 cos βÞ
c

z0 þ φ1

�

þ E20E30 cos

�ðω3 cos γ − ω2 cos βÞ
c

z0 þ ðω2 sin β þ ω3 sin γÞ
c

x0
�
; ð4Þ

where z0 ¼ z − cβ0t and x0 ¼ x. The angles of incidence α, β, and γ are given by Eqs. (1) and (2). The distribution
of the transverse and the longitudinal components of the force acting on the electrons are obtained as spatial derivatives of
Eq. (4) as

FT ≈ − ∂I
∂z0 ≈ E01E02

ðω1 cos α − ω2 cos βÞ
c

sin

�ðω1 cos α − ω2 cos βÞ
c

z0 þ φ1

�
;

FL ≈ − ∂I
∂x0 ≈ E02E03

ðω2 sin β þ ω3 sin γÞ
c

sin

�ðω3 cos γ − ω2 cos βÞ
c

z0 þ ðω2 sin β þ ω3 sin γÞ
c

x0
�
: ð5Þ

Here we neglect the second term of the longitudinal force
coming from Eq. (4), which is small compared to the first
term (condition jω3−ω2j≪ jω1−ω2j is applied). The phase
of the transverse momentum modulation occurring at fre-
quency ωT ¼ ω3 − ω2 depends both on the transverse and
the longitudinal electron coordinates. Therefore it is neces-
sary to perform the interaction in the focus of the electron
beam, where the transverse beam size we is much smaller
than the spatial period of the transverse momentum modu-
lation ΛT ¼2πc=ðω2 sinβþω3 sinγÞ. In this case, the result-
ing deflection angle of the electrons depends only on the
initial longitudinal position of the electron in the electrons’
rest frame z0 and the phase of the optical traveling wave.

The resulting electron velocity change is calculated from
the ponderomotive potential by integrating the classical
equation of motion over the time of the interaction using
impulse approximation. We note that we neglect quantum
effects due to the fact that the temporal period of the
longitudinal momentum modulation is larger than a typical
temporal coherence time of the electron beam (<10 fs).
This condition is equivalent to ℏω1 − ℏω2 < σE, where σE
is the initial energy spread of the electron beam related to its
coherence time via ξt ¼ ℏ=σE [27]. As a result we obtain
the velocity change of the electron with an initial coordinate
z0 ≈ 0 after the interaction as a function of the initial
electron coordinates x0 and z0 as

Δ_z0 ¼ e2τeffE10E20

4m2
0ω

2

ðω1 cos α − ω2 cos βÞ
c

sin

�ðω1 cos α − ω2 cos βÞ
c

z0 þ φ1

�
;

Δ_x0 ¼ e2τeffE20E30

4m2
0ω

2

ðω2 sin β þ ω3 sin γÞ
c

sin

�ðω3 cos γ − ω2 cos βÞ
c

z0 þ ðω2 sin β þ ω3 sin γÞ
c

x0
�
: ð6Þ

Here τeff ¼ τFWHMw0z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π=ð4 ln 2w2

0z þ 2c2β20τ
2
FWHMÞ

q
is

an effective interaction time given by the spatiotemporal
overlap between the electron and the three optical waves,
τFWHM is the pulse duration (full width at half maximum) of
each pulse, w0z is an average value of the 1=e2 radius of
the laser beams in the z direction andω ¼ ðω1 þ ω2Þ=2 is the
effective value of the frequency for evaluation of the ponder-
omotive force (here we assume that ðω1−ω2Þ=ω≪1).
Propagation distance between the interaction and the tem-
poral focus can be obtained from the derivative of the change
of the longitudinal velocity component as

ft ¼ −
�
dðΔ_z0Þ
dz0

����
z0¼0

�−1
cβ0

¼ 4m2
0ω

2c3β0
e2τeffE10E20ðω1 cos α − ω2 cos βÞ2

: ð7Þ

We note that for the fields given by Eq. (1), the negative
sign of the derivative of the velocity change (electron

velocity decreases with increasing z0) required for electron
compression in the center of the electron pulse z0 ¼ 0 is
obtained with the initial phase of the first wave φ1 ¼ π.
To allow isolation of an individual attosecond electron

pulse from the pulse train by spatial filtering using an
aperture, the initial electron pulse duration has to be smaller
than the temporal period of the transverse streaking by the
second travelingwaveTT ¼ 2π=jω2 − ω3j and the streaking
has to be strong enough to displace the subsequent electron
pulses in the train by a distance, which is larger than the
transverse size of the electron beam in the temporal focus
weðftÞ. This gives a condition for the minimum ratio
between the field amplitudes of the third and the first waves
E30 and E10:

E302πcðω2 sinβþω3 sin γÞðω3 cos γ −ω2 cosβÞ
E10ðω1 −ω2Þ2ðω1 cosα−ω2 cosβÞ

> weðftÞ:

ð8Þ
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The feasibility of the proposed approach is tested by
numerical simulations of the interaction between the pulsed
electron beam with a central kinetic energy of Ek ¼
200 keV and three light pulses. The electron energy is
chosen due to the availability of ultrafast electron micro-
scope-based sources of femtosecond single-electron pulses
in this energy region [14]. However, the proposed scheme
is universal and works in a wide range of initial electron
energies up to ≈1 MeV. At higher electron energies, the
initial energy spread of the electrons becomes comparable
to the amplitude of the energy modulation, which can be
introduced by laser pulses with realistic pulse energies.
We solve the classical relativistic equation of motion with
Lorentz force ðd=dtÞðΓm0vÞ ¼ qðEþ v ×BÞ using the
fifth-order Runge-Kutta algorithm. Laser fields are treated
as Gaussian in both the transverse and the longitudinal
directions with respect to their propagation direction with
the polarization along the y direction perpendicular to the
plane of incidence.
Initial electron distribution is assumed to be Gaussian

with the transverse size of the beam in the focuswe ¼ 15 nm
and the pulse duration of τFWHM ¼ 200 fs. The energy
spread of the electrons is σE ¼ 0.5 eV (FWHM) and the
normalized transverse emittance is εT ¼ 3 pm rad (emit-
tance of the diffraction-limited electron beam can be
estimated as εT ¼ β0ΓλdB=ð4πÞ ≈ 0.2 pm rad). All simula-
tion parameters can be found in Table I. The practical limits
for the electron beam spot size and emittance are we <
50 nm and εT < 10 pm rad for the set of laser parameters
used. With larger values of we and εT , the beam diameter in
the temporal focus becomes comparable to the transverse
distance between two subsequent pulses in the train.
In Fig. 2(a) we show the distribution of the electron’s

transverse and longitudinal velocities immediately after the
interaction with the laser fields. The spatial distribution of
the electrons in the temporal focus after a drift distance of
ft ¼ 1.55 cm is shown in Fig. 2(b) (the inset shows the
detail of the central electron pulse). The diameter of the
aperture d ¼ 16 μm, which is used for spatial filtering of
the electrons to obtain an isolated electron pulse, is
indicated by dashed lines. The temporal profile of the

electrons transmitted through the aperture shown in Fig. 3
reveals a pulse with a duration of τe;FWHM ¼ 90 as. The
minimum duration of the compressed electron pulse is
limited by the initial uncorrelated energy spread of the
electron beam and by the width of the electron energy
spectrum after the interaction with optical fields, which is
shown in the left inset of Fig. 3. The final energy spread
of the compressed pulse is σE;fin ¼ 73 eV (relative energy
spread σE;fin=Ek ¼ 3.6 × 10−3). Assuming conservation of
the longitudinal phase-space volume, the minimum dura-
tion of the compressed electron pulse can be estimated as
τe;fin ¼ τe;inσE;in=σE;fin ¼ 65 as. Here τe;in ¼ TL=4 ¼ 0.5π=
ðω1 − ω2Þ is the duration of one quarter of the period
of the longitudinal velocity modulation determining
the time window, in which the longitudinal velocity
chirp introduced to the electrons by the ponderomotive
interaction is approximately linear. We note that taking
quantum effects into account would not change the result

TABLE I. Parameters used in numerical simulations.

Laser beams ω1 ω2 ω3

Wavelength [nm] 1888 2266 2300
E0 [V=m] 1.4 × 109 1.7 × 1010 8 × 109

w0 [μm] 15 15 15
τFWHM [fs] 300 300 300
Angle of incidence [°] 40.7 51.5 52.4

Electron beam

Ek [keV] σE [eV] we [nm] τFWHM [fs] εT [pm rad]
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FIG. 2. (a) Distribution of the transverse (βx, black points) and
longitudinal (βz, red points) velocity components of the electrons
immediately after the interaction with the three laser pulses.
Black curve corresponds to the center of the βx distribution
broadened due to electron beam divergence. (b) Spatial distri-
bution of the electrons in the temporal focus after a drift distance
of ft ¼ 1.55 cm downstream the interaction. The inset shows the
detail of the central attosecond electron pulse.
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significantly as the minimum pulse duration obtained using
quantum-mechanical considerations can be estimated as
τq−me;fin ≅ 25 as [calculated using Eq. (3) in [28] ].
The frequencies, which are used in numerical simula-

tions, can be obtained from a single optical parametric
amplifier (OPA) pumped by an ytterbium-doped solid state
laser emitting at a wavelength of λ ¼ 1030 nm. This
technology allows generation of laser pulses with both
high pulse energy and high repetition rate (the maximum
pulse energy used in the numerical simulations is 40 μJ,
which can be obtained with repetition rate fr > 100 kHz).
This is a necessary prerequisite for ultrafast imaging
experiments with single-electron pulses because for for-
mation of a single diffraction image, 105–107 electrons are
required. Because the difference ω3 − ω2 is small, the two
pulses at frequencies ω2 and ω3 can be obtained from a
single pulse by splitting its spectrum.
For reaching attosecond timing control of the electrons,

phase stability between the three laser pulses is required. This
can be achieved either by using a carrier-envelope phase
(CEP) stabilized laser system or by passive CEP stabilization
of the idler beam in an OPA. The jitter of the arrival time of
the isolated electron pulse is given by the stability of the
difference between optical phases of the two laser pulses at
frequencies ω1 and ω2 as Δτ ¼ Δðφ1 − φ2ÞTL. With the
state-of-the-art performance, the CEP fluctuations of
100 mrad [29] are translated to a timing jitter of the atto-
second electron pulse of ≈500 as (depending on the longi-
tudinal modulation frequency ωL), which is a much lower
value than the best experimentally demonstrated timing
stability for rf (≈10 fs [30]) or THz (≈3 fs [26]) compression
schemes.
We note that the proposed technique is based on

compression and filtering of the initial electron distribution

and the total amount of electrons in the isolated attosecond
pulse available for experiments is related to the initial pulse
duration and the pulse charge. For the numerical simu-
lations presented in this paper, the isolated attosecond pulse
contains ≈5% of the charge of the initial electron pulse
(within the time window of 1 fs). Because of the sinusoidal
shape of the compression fields, there is a small back-
ground of uncompressed electrons from the central cycle of
the traveling wave, which is partially filtered out by the
aperture.
The application of periodic electron pulse trains is limited

to investigation of cycle-reversible processes such as non-
linear electronic polarization in nanostructures or phase-
resolved imaging of optical and plasmonic near fields. In
contrast, the isolated attosecond electron pulses can serve for
the study of processes, which are driven by few-cycle laser
pulses and are not repetitive with the light cycle. These
include, e.g., all the processes, where the electrons populate
a real quantum state in the system already during the
interaction with few-cycle light. Subcycle temporal reso-
lution will enable us to study the effects of Coulomb
interaction occurring during strong-field photoexcitation
of high density electrons in solids, electron-electron, and
electron-phonon scattering of high-energy quasiparticles
accelerated by the strong light field or plasmonic damping
in metallic nanostructures. Further, a direct cycle-resolved
imaging of the electromagnetic fields generated during
quantum tunneling of the electron wave packets from
surfaces of nanostructures may become possible. The
presented technique thus will lead to the extension of
attosecond science to the field of high-resolution imaging
using pulsed electron beams. Ponderomotive interaction
with multiple laser beams combined with femtosecond
pulse- and beam-shaping techniques also offers a more
general framework and can be applied for electron wave
packet shaping in quantum electron microscopy or for
preparation of a certain spatiotemporal distribution of
plasma density in laser-wakefield acceleration experiments.
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