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Feynman integrals obey linear relations governed by intersection numbers, which act as scalar products
between vector spaces. We present a general algorithm for the construction of multivariate intersection
numbers relevant to Feynman integrals, and show for the first time how they can be used to solve the
problem of integral reduction to a basis of master integrals by projections, and to directly derive functional
equations fulfilled by the latter. We apply it to the decomposition of a few Feynman integrals at one and two
loops, as first steps toward potential applications to generic multiloop integrals. The proposed method can
be more generally employed for the derivation of contiguity relations for special functions admitting
multifold integral representations.
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Introduction.—Scattering amplitudes encode crucial
information about collision phenomena in our Universe,
from the smallest to the largest scales.Within the perturbative
field-theoretical approach, the evaluation of multiloop
Feynman integrals is mandatory for the determination of
scattering amplitudes and related quantities. An exception is
made for those cases where a limited number of kinematic
invariants yields the use of direct integration techniques;
the evaluation of multiloop Feynman integrals requires the
exploitation of linear relations among integrals, in order to
simplify the otherwise impossible calculations. Those rela-
tions can be used both for decomposing scattering ampli-
tudes in terms of a basis of functions, referred to as master
integrals (MIs), and for the evaluation of the latter. The
standard procedure used to derive relations among Feynman
integrals in dimensional regularization makes use of
integration-by-parts identities (IBPs) [1], which are found
by solving linear systems of equations [2] (see [3,4] and
references therein for reviews). Algebraic manipulations in
these cases are very demanding, and efficient algorithms
for solving large-size systems of linear equations have been
devised recently, by making use of finite field arithmetic and
rational functions reconstruction [5–8].
In this Letter, we propose a novel, alternative approach for

the direct decomposition of Feynman integrals. Our method

is based on the identification of algebraic properties obeyed
by Feynman integrals, not known until recently, and which
we access by means of intersection theory.
In [9], it was shown that intersection numbers [10] of

differential forms can be employed to define (what amounts
to) a scalar product on a vector space of Feynman integrals
in a given family. Using this approach, projecting any
multiloop integral onto a basis of MIs is conceptually no
different from decomposing a generic vector into a basis of
a vector space. Within this new approach, relations among
Feynman integrals can be derived avoiding the generation
of intermediate, auxiliary expressions which are needed
when applying Gauss’ elimination, as in the standard IBP-
based approaches. In the initial studies, [9,11], this novel
decomposition method was applied to the realm of special
mathematical functions falling in the class of Lauricella FD
functions, as well as to Feynman integrals on maximal cuts,
i.e., with on-shell internal lines, mostly admitting a onefold
integral representation. Those results concerned a partial
construction of Feynman integral relations, mainly limited
to the determination of the coefficients of the MIs with the
same number of denominators as the decomposed integral,
which was achieved by means of intersection numbers for
univariate forms.
In this Letter, we make an important step further, and

address the complete integral reduction, by determining all
coefficients, including those associated to MIs correspond-
ing to subgraphs. In the current Letter, we show its
application to a few paradigmatic cases at one and two
loops. Generic Feynman integrals admit multifold integral
representations. Their complete decomposition requires the
evaluation of intersection numbers for multivariate rational

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 123, 201602 (2019)

0031-9007=19=123(20)=201602(7) 201602-1 Published by the American Physical Society

https://orcid.org/0000-0001-9711-7798
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.201602&domain=pdf&date_stamp=2019-11-12
https://doi.org/10.1103/PhysRevLett.123.201602
https://doi.org/10.1103/PhysRevLett.123.201602
https://doi.org/10.1103/PhysRevLett.123.201602
https://doi.org/10.1103/PhysRevLett.123.201602
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


differential forms. Intersection numbers of multivariate
forms have been previously studied in [12–20]. Recently,
a new recursive algorithm was introduced in [21]. Here, we
use its refined implementation and apply it to Feynman
integrals, which provide a major step toward large-scale
applicability of our strategy for the reduction to MIs. The
results of this Letter show potential for further applications
ranging from particle physics, through condensedmatter and
statistical mechanics, to gravitational-wave physics (while
making new connections to mathematics).
Feynman integrals and differential forms.—Within the

Baikov representation (BR), Feynman integrals can be cast
in the form [22]

I ¼
Z
C
uðzÞφðzÞ; ð1Þ

where the integration variables z ¼ ðz1;…; znÞ are the
propagators of the diagrams, supplemented by a set of
auxiliary propagators (related to the irreducible scalar
products). In fact, the number n of integration variables
amounts to the number of scalar products formed by the
external and the loop momenta. The function uðzÞ is
multivalued, and it is defined either as uðzÞ ¼ BγðzÞ
[23], or as uðzÞ ¼ Q

i BiðzÞγi [24]. The factors B and Bi
are graph (Baikov) polynomials; their exponents (γ or
γi ∉ Z) depend on the dimensional regulator d, and on the
number of loops and external momenta of the correspond-
ing diagram. The integration domain C is defined as such
that, according to the case, either B or

Q
i Bi vanishes on

its boundary ∂C. In the integrand, φ is a single-valued
differential form and can generically be written as [25]

φðzÞ ¼ φ̂ðzÞdnz; φ̂ðzÞ≡ fðzÞ
za11 � � � zann ; ð2Þ

with dnz≡ dz1 ∧ … ∧ dzn, and where ai ∈ Z, and f is a
rational function of z with poles regulated by uðzÞ [26].
Multiple-cut integrals [27,28], identified by the on-shell
conditions zi1 ¼ … ¼ zik ¼ 0, are also of the form (1),
but their integrands depend on fewer integration variables
(and their integration contour is modified); see [9,11].
Feynman integrals [and, more generally, hypergeometric

integrals of the type in Eq. (1)], whose integrands differ by
terms proportional to covariant derivatives, give the same
result after integration. Employing Stokes’ theorem, we
find equivalence classes of n forms, φ ∼ φþ∇ωξ, for any
(n − 1)-form ξ and where ∇ω ≡ dþ ω ∧ is a covariant
derivative with a one-form ω≡ d logu, such that

R
C u∇ωξ

vanishes. The space of n-forms modulo the equivalence
relation written above is a vector space known as twisted
cohomology group Hn

ω [29]. We denote its elements by
hφj ∈ Hn

ω. Within this framework, the Feynman integral I
from Eq. (1) can be interpreted as a pairing of hφj with the
integration contour jC�,

I ¼ hφjC�: ð3Þ

Consider a set of ν MIs, say Ji, defined as

Ji ¼
Z
C
uðzÞeiðzÞ ¼ heijC�; i ¼ 1;…; ν; ð4Þ

in terms of any independent set of differential forms heij.
Then, the decomposition of a generic integral I in terms of
the MIs Ji can be interpreted as coming from the more
fundamental decomposition of the differential form hφj in
terms of the basis forms heij, namely

I ¼
Xν
i¼1

ciJi; ⇔ hφj ¼
Xν
i¼1

ciheij; ð5Þ

with the coefficients determined by the master decompo-
sition formula [9,11]

ci ¼
Xν
j¼1

hφjhjiðC−1Þji; Cij ¼ heijhji; ð6Þ

where jhji (j ¼ 1;…; ν) [42], span a dual (and auxiliary)
vector space ðHn

ωÞ� ¼ Hn
−ω. The scalar product hφLjφRi

between the two vector spaces is called intersection number
of differential forms [10]. The characterization of the
decomposition of Feynman integrals in terms of multivari-
ate intersection numbers [12–21] is the main result of this
Letter.
Using Eqs. (5) and (6), our algorithm for expressing any

Feynman integral of the type of Eq. (1) as linear combi-
nations of MIs proceeds along three steps as follows:
1. Determination of the number ν of MIs. 2. Choice of
the bases of forms heij and jhii. 3. Evaluation of the
intersection numbers for multivariate forms, appearing in
the entries of the Cmatrix, and in hφjhji.We finally remark
that the coefficient ci in Eq. (6) is independent on the
choice of the auxiliary basic forms jhji [43]. In the
following, we choose ĥj ¼ êj, namely jhji ¼ jeji.
Number of master integrals.—Within the standard IBP

decomposition, based on the so-called Laporta method,
the number of MIs is determined at the end of the
reduction procedure, by counting the irreducible integrals
that are untouched by Gauss’ elimination. The results
of [9,11,44–48] have been pointing to a geometrical
characterization of the number ν of MIs, which, within
our formalism, allow us to relate it to topological properties
such as the dimension of the spaces Hn

�ω,

ν≡ dimHn
�ω ¼ ð−1Þn½nþ 1 − χðPωÞ�; ð7Þ

in terms of the Euler characteristic χðPωÞ of the projective
[49] variety Pω, defined by Pω ¼ fset of poles of ωg, or
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equivalently by the submanifold where uðzÞ vanishes or
diverges (depending on signs of γi).
This connection yields the use of complex Morse

(Picard-Lefschetz) theory to determine ν as the number
of critical points of the function log uðzÞ. Let us define

ω≡ d log uðzÞ ¼
Xn
i¼1

ω̂idzi; ð8Þ

then the number of critical points is given by the number of
solutions of the system of equations

ω̂i ≡ ∂zi log uðzÞ ¼ 0; i ¼ 1;…; n; ð9Þ

with the short-hand notation ∂zi ≡ ∂=∂zi. Owing to the
application of these novel mathematical concepts, the
number ν can be accessed before the decomposition, as
dictated by the geometrical properties of the graph (Baikov)
polynomial associated to each Feynman diagram.
Multivariate intersection numbers.—A generic rational n

form can be decomposed into a combination of a one

form and a (n − 1) form, as hφðnÞ
L j ¼ P

iheðn−1Þi j ∧ hφðnÞ
L;i j,

jφðnÞ
R i ¼ P

j jhðn−1Þj i ∧ jφðnÞ
R;ji, where i; j ¼ 1;…; νn−1,

with νn−1 being the number of MIs in the inner space,

spanned by the arbitrary bases heðn−1Þi j, jhðn−1Þj i. In the

above expressions, hφðnÞ
L;i j and jφðnÞ

R;ji are one forms (in the
variable zn), and they can be treated as coefficients of
the basis expansion and hence obtained by projection.
Then, n-form intersection numbers can be evaluated
recursively in terms of ðn − 1Þ-form intersection numbers
as [21]

nhφðnÞ
L jφðnÞ

R i¼−
Xνn−1
i¼1

X
p∈Pn

Res
zn¼p

ðn−1hφðnÞ
L jhðn−1Þi iψ ðnÞ

i Þ; ð10Þ

where the functions ψ ðnÞ
i are the solutions of the system of

differential equations

∂znψ
ðnÞ
i −

Xνn−1
j¼1

Ω̂ðnÞ
ij ψ ðnÞ

j ¼ φ̂ðnÞ
R;i ; ð11Þ

the elements of the Ω̂ðnÞ matrix are given by

Ω̂ðnÞ
ij ¼−

Xνn−1
k¼1

ðC−1
ðn−1ÞÞikn−1heðn−1Þk jð∂zn − ω̂nÞhðn−1Þj i; ð12Þ

and Pn is the set of poles of Ω̂ðnÞ (including possible poles
at infinity). Additional mathematical details are provided in
the Supplemental Material [50] for the interested readers.
Integral decomposition: bottom-up approach.—For a

given integral, any set of denominators identifies a sector.

Therefore, any cut (a set of vanishing denominators)
corresponds to a sector. The number of MIs can be
determined by counting the number of critical points,
according to Eq. (9): we observed that using uðzÞ on the
cut, it provides the number of MIs in the corresponding
sector, whereas using uðzÞ on the cut with regulating
factors zρii for any uncut denominator, it yields the number
of MIs surviving on that cut.
After determining the number of MIs, the decomposition

of Feynman integrals can be obtained with Eq. (6). The
determination of coefficients can be performed on unitarity
cuts, where the integrands are simpler, and the evaluation
of the multivariate intersections requires fewer iterations.
A minimal set of spanning cuts is sufficient to retrieve the
information of the complete decomposition [55], and
then, using the regulated uðzÞ, the master decomposition
formula (6) yields the coefficients of those MIs that survive
on the cut (after taking ρi → 0 limit). As in the case of IBP-
based approaches, additional relations may be obtained
from the symmetries of the diagrams, in order to minimize
the number of independent integrals.
As discussed in Refs. [9,11] also, differential equations

in kinematic variables, e.g., ∂sJi ¼
P

j aijJj, and dimen-
sional recurrence relations for MIs can be obtained with the
above techniques.
Massless box diagram.—Let us consider the massless

box diagram at one loop, Fig. 1. Within the BR,

uðzÞ ¼ fðst− sz4 − tz3Þ2 − 2tz1½sðtþ 2z3 − z2 − z4Þ þ tz3�
þ s2z22 þ t2z21 − 2sz2½tðs− z3Þ þ z4ðsþ 2tÞ�gðd−5Þ=2:

ð13Þ

For each of the 15ð¼24 − 1Þ sectors, we use Eq. (9) on
the corresponding cut to determine the number Nsector of
MIs. The nonzero cases are [56] Nf1;2;3;4g ¼ 1, Nf1;3g ¼ 1,
Nf2;4g ¼ 1, amounting to three MIs. We choose them to be

ð14Þ

so that any integral I of the form of Eq. (1), with u given in
Eq. (13), and φ defined in Eq. (2) (with n ¼ 4), can be
decomposed as

FIG. 1. Massless box with massless external legs: p2
i ¼ 0, for

i ¼ 1, 2, 3, 4, with s ¼ ðp1 þ p2Þ2 and t ¼ ðp2 þ p3Þ2.
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ð15Þ

We determine the set of spanning cuts as ðCutf1;3g;Cutf2;4gÞ
to obtain the full decomposition. (i) On the Cutf1;3g, we use
the regularized u1;3 ¼ zρ22 z

ρ4
4 uð0; z2; 0; z4Þ to obtain the

corresponding ω̂2 and ω̂4. After choosing the z4 coordinate
as the inner space, using Eq. (9), we get νð42Þ ¼ 2, and
νð4Þ ¼ 2. Accordingly, we choose the basis forms

êð42Þ1 ¼ 1

z2z4
; êð42Þ2 ¼ 1; êð4Þ1 ¼ 1

z4
; êð4Þ2 ¼ 1:

ð16Þ

(ii) Cutf2;4g can be obtained from Cutf1;3g, because of the
symmetry of the graph under the exchange of s and t, with the
substitution of ðz4; z2Þ → ðz3; z1Þ and the space labels
ð42Þ → ð31Þ and ð4Þ → ð3Þ.
With the help of Eq. (6) and using the multivariate

intersection numbers for two forms, we determine the
coefficients ci in Eq. (15).
Example.—Let us illustrate the decomposition of

ð17Þ

On the Cutf1;3g, we obtain

=
∫
C

u1,3 ϕ1,3 , ϕ1,3 = ϕ̂1,3 dz4 ∧ dz2 , ð18Þ

where φ̂1;3 ¼ ½ω̂1=ðz22z4Þ�. On this specific cut, we have

ð19Þ

with

c1 ¼
X2
j¼1

hφ1;3jeð42Þj iðC−1
ð42ÞÞj1 ¼

ðd − 6Þðd − 5Þ
st

;

c2 ¼
X2
j¼1

hφ1;3jeð42Þj iðC−1
ð42ÞÞj2 ¼ −

4ðd − 5Þðd − 3Þ
s3t

: ð20Þ

On the Cutf2;4g, we have

= c1 + c3 , ð21Þ

wherewe findc1 in agreementwithEq. (20) and c3 ¼ c2js↔t.
Finally, the integral of Eq. (17) is decomposed in terms

of MIs, as in Eq. (15), in agreement with the IBP
decomposition.
A two-loop diagram.—Let us consider the massless box

with a self-energy insertion diagram in Fig. 2.
Within the loop-by-loop BR [24],

uðzÞ ¼ B
2−d
2

1 B
d−3
2

2 B
d−5
2

3 ; ð22Þ

where

B1 ¼ z6; B2 ¼ 2ðz5 þ z6Þz4 − z24 − ðz5 − z6Þ2;
B3 ¼ t2z21 þ s2z22 − 2tz1½ð2sþ tÞz3 þ sðt − z2 − z6Þ�

− 2sz2½st − tz3 þ ðsþ 2tÞz6� þ ½tz3 þ sðz6 − tÞ�2:
ð23Þ

For all the possible 63ð¼26 − 1Þ sectors, using Eq. (9) on
the corresponding cut, we determine the number Nsector of
MIs. The nonzero cases are N1;2;3;4;5 ¼ 1, N1;3;4;5 ¼ 1, and
N2;4;5 ¼ 1, giving three MIs. We choose them as

ð24Þ

Any integral I of the form (1), with u given in (22), and φ
defined in Eq. (2) (with n ¼ 6), can be decomposed as

ð25Þ

We use the set of spanning cuts (Cutf1;3;4;5g, Cutf2;4;5g) to
obtain the full decomposition. (i) On the Cutf1;3;4;5g, we use
the regularized u1;3;4;5 ¼ zρ22 uð0; z2; 0; 0; 0; z6Þ to obtain the
corresponding ω̂2 and ω̂6. After choosing the z2 coordinate
for the inner space, using Eq. (9), we get νð26Þ ¼ 2

(amounting to the number of solutions of ω̂2 ¼ 0 and
ω̂6 ¼ 0) and νð2Þ ¼ 2 (amounting to the number of
solutions of ω̂2 ¼ 0). We choose the basis forms as

êð26Þ1 ¼ êð2Þ1 ¼ 1

z2
; êð26Þ2 ¼ êð2Þ2 ¼ 1: ð26Þ

(ii) On the cut Cutf2;4;5g, we use the regularized u2;4;5 ¼
zρ11 z

ρ3
3 uðz1; 0; z3; 0; 0; z6Þ to obtain the corresponding ω̂1,

FIG. 2. Massless box with a self-energy insertion diagram:
p2
i ¼ 0, for i ¼ 1, 2, 3, 4, with s ¼ ðp1 þ p2Þ2 and t ¼

ðp2 þ p3Þ2.
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ω̂3, and ω̂6. Using Eq. (9), we get νð136Þ ¼ 2 (amounting to
the number of solutions of ω̂1 ¼ 0, ω̂3 ¼ 0, and ω̂6 ¼ 0),
νð13Þ ¼ 2 (amounting to the number of solutions of ω̂1 ¼ 0

and ω̂3 ¼ 0), and νð1Þ ¼ 2 (amounting to the number of
solutions of ω̂1 ¼ 0). The basis forms are chosen as

êð136Þ1 ¼ 1

z1z3
; êð136Þ2 ¼ 1; êð13Þ1 ¼ êð1Þ1 ¼ z1;

êð13Þ2 ¼ êð1Þ2 ¼ 1: ð27Þ

The basic forms defined above can be used for the
evaluation of the multivariate intersection numbers,
required to determine the coefficients of the complete
integral decomposition.
Example.—Let us consider the decomposition of

ð28Þ

On the Cutf1;3;4;5g, we obtain

ð29Þ

where φ̂1;3;4;5 ¼ ½ω̂2=ðz2z26Þ�. On this specific cut, we have

ð30Þ

where the coefficients can be obtained from two-form
intersections as

ci ¼
X2
j¼1

hφ1;3;4;5jeð26Þj iðC−1
ð26ÞÞji: ð31Þ

On the Cutf2;4;5g, we obtain

ð32Þ

where φ̂2;4;5 ¼ ½ω̂2=ðz1z3z26Þ�.
On this specific cut, we have

ð33Þ

where the coefficients can be obtained from three-form
intersections as

c1 ¼
X2
j¼1

hφ2;4;5jeð136Þj iðC−1
ð136ÞÞj1;

c3 ¼
X2
j¼1

hφ2;4;5jeð136Þj iðC−1
ð136ÞÞj2; ð34Þ

yielding c1 in agreement with the value found on the
Cutf1;3;4;5g. Finally, we obtain a relation of the type in
Eq. (25), in agreement with the IBP decomposition.
Beside the shown examples, we have successfully applied

the aforementioned algorithm to the complete decomposition
of a few one- and two-loop integrals involving the evaluation
of up to six-variable intersection numbers. The resulting
expressions are in agreement with the IBP relations [57–60].
Conclusions.—In this Letter, we exposed a novel vector

space structure for Feynman integrals. Elaborating on the
original proposal of [9] and on the wider studies [11,21],
we have shown that Feynman integrals can be expressed in
terms of a complete basis of integrals, by making use of
intersection numbers, which act as scalar products for the
vector space of integrals, through the pairing of differential
forms appearing in their integrands. Let us notice that the
result of the multivariate intersection numbers should not
depend on the ordering of the integration variables, chosen
in the recursive formula. Nevertheless, we observed that
suitably chosen variable orderings may simplify and fasten
the recursive procedure. This is a feature of the proposed
algorithm that requires a dedicated study, which goes beyond
the goal of the present work. Within Baikov representation,
one-loop and multiloop integrands have a similar structure,
and therefore we expect that our decomposition algorithm
can be applied to integrals associated with more complex
diagrams than the ones considered here, which we plan to
investigate in the near future. Additional interesting appli-
cations may involve the evaluation of master integrals by
differential equations, using intersection theory.
Scattering amplitudes are analytic functions, determined

by their singularities. Intersection numbers, and their
relation to Stokes’ and Cauchy’s residue theorems, embed
what we believe is a clean role of analyticity in the
amplitudes decomposition. We investigated the geometric
origin of master integrals and their relations to the number
of critical points and Euler characteristics. Applications to
Feynman integrals in representations other than Baikov will
also constitute topics of future works. The present study can
be broadly applied in the context of theoretical particle
physics, condensed matter and statistical mechanics, gravi-
tational-wave physics, as well as mathematics.
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