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We show that the two-dimensional N ¼ ð2; 2Þ Volkov-Akulov action that describes the spontaneous
breaking of supersymmetry is a TT̄ deformation of a free fermionic theory. Our findings point toward a
possible relation between nonlinear supersymmetry and TT̄ flows.
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Introduction.—An interesting approach in the study of
quantum field theories consists of startingwith an accessible
model, for example a free theory, and perturbing it by means
of some deformation, which induces a renormalization
group flow. Mostly one is interested in relevant deforma-
tions, which keep the theorywell defined in theUV, whereas
irrelevant deformations change the very definition of the
theory in an uncontrollable way. An exception to this
statement is given by a special class of irrelevant deforma-
tions of two-dimensional theories—namely, TT̄ deforma-
tions (T being the energy-momentum tensor) since they
happen to preserve some properties of the original theory
along the flow [1–3]. For example, the finite volume
spectrum of the deformed theory can be determined from
that of the undeformed one [1,2]. In this Letter, we focus on
the relation between TT̄ deformations and supersymmetry,
which was recently investigated in Refs. [4–8].
Considering a two-dimensional quantum field theory, its

TT̄ deformation can be defined by the flow equation

∂λL ¼ − detðT½Lλ�Þ; ð1Þ

where T½Lλ� is the energy-momentum tensor of the
deformed Lagrangian, which in light-cone coordi-
nates can be expressed as detðTÞ ¼ TþþT¼¼ − Θ2, where
Θ ¼ Tþþ¼ ¼ T¼þþ. It is important to observe that Eq. (1)
holds with the use of the equations of motion since T is
defined up to terms that vanish on shell.

Equation (1) is nonlinear and in principle hard to solve.
However, in some cases, a one parameter family of
Lagrangians solving it is explicitly known. For example,
in Refs. [3,9], it is shown that, starting with a free scalar as
initial data

L0 ¼
1

2
∂þþϕ∂¼ϕ; ð2Þ

the TT̄ flow equation can be solved recursively and the
result is the Nambu-Goto Lagrangian

LNG ¼ 1

2λ
ð−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2λ∂þþϕ∂¼ϕ

p
Þ: ð3Þ

We wonder if an equivalent procedure can be followed
for a purely fermionic theory. Our starting point is a free
Lagrangian for a pair of 2Dcomplex fermions ðGþ; G−Þ [10],

L0 ¼ iG−∂þþḠ− þ iGþ∂¼Ḡþ: ð4Þ

The nonvanishing components of the energy-momentum
tensor are then

Tþþþþ ∼ iḠþ∂þþGþ þ iGþ∂þþḠþ;

T¼¼ ∼ iḠ−∂¼G− þ iG−∂¼Ḡ−; ð5Þ

and the equations of motion read ∂¼Gþ ¼ ∂þþG− ¼ 0.
When trying to solve Eq. (1) recursively, at the first step,
one finds that

detðT½L0�Þ ¼ TþþþþT¼¼ ∼ ḠþḠ−□ðG−GþÞ; ð6Þ

using also the equations of motion. We notice therefore that,
at the first order in the deformation of the free fermionic
theory, a term is producedwhich has precisely the form of the
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four-Fermi term in theVolkov-Akulovmodel [12]. This gives
rise to the question of whether or not the Volkov-Akulov
model is a solution of the TT̄ flow equation, such that in the
limit λ ¼ 0 the free theory is recovered. In the rest of this
Letter, we will verify this expectation. In particular, we will
show that, for the two-dimensional N ¼ ð2; 2Þ Volkov-
Akulov model,

LVA ¼ −f2 þ iG−∂þþḠ− þ iGþ∂¼Ḡþ

−
1

f2
GþG−□ðḠ−ḠþÞ

−
1

f6
GþG−Ḡ−Ḡþ□ðGþG−Þ□ðḠ−ḠþÞ; ð7Þ

formula (1) holds, with λ related to the supersymmetry
breaking scale by 2λ−1 ¼ f2.
It is worth mentioning that a possible relation between

TT̄ deformations and the Volkov-Akulov model was
already suggested several years ago [13,14], but a clear
answer on whether or not such a proposal was correct has
never been given. Instead, it has been argued more recently
[9] that the TT̄ deformation of a Goldstino might contain
infinite interactions. This Letter aims to address precisely
this long-standing open problem, showing explicitly that
the TT̄ deformation of a free fermion gives raise to the
Volkov-Akulov model, whose Lagrangian can be written in
a closed form.
The supercurrents of the 2D Volkov-Akulov model.—To

facilitate the calculations, we use N ¼ ð2; 2Þ superspace.
The nonvanishing superspace anticommutators describing
the two-dimensional N ¼ ð2; 2Þ supersymmetry algebra
without central charges are

fD−; D̄−g ¼ i∂¼; fDþ; D̄þg ¼ i∂þþ: ð8Þ

Consider a set of N ¼ ð2; 2Þ chiral superfields Φi, defined
by D̄�Φi ¼ 0. The most general two-derivative supersym-
metric σ-model Lagrangian describing their interactions
has the form

L ¼
Z

d4θKðΦi; Φ̄jÞ þ
�Z

d2θWðΦiÞ þ c:c:

�
; ð9Þ

where the Kähler potential K is a real function of the Φi,
while the superpotentialW is holomorphic. To simplify the
derivation of our result, we can also restrict the analysis to
the case in which the Kähler manifold is flat; therefore
K ¼ ΦiΦ̄i, where Φ̄i ¼ δijΦ̄j. The equations of motion in
superspace which stem from Eq. (9) read

D̄−D̄þΦ̄i ¼ −∂iW; ð10Þ

where we define ∂iW ¼ ∂W=∂Φi. By expanding Eq. (10)
in the chiral θ coordinates, it is possible to extract the

complete set of equations of motion for the component
fields. We stress that Eq. (10) holds for any choice ofW and
for any set of chiral superfields Φi.
Along with the proposal of Ref. [7], the N ¼ ð2; 2Þ

supersymmetric extension of the TT̄ deformation is given
(roughly) by the square of the supercurrent multiplet.
Indeed, this multiplet can be described by an N ¼ ð2; 2Þ
superfield that contains in its component expansion differ-
ent Noether (conserved) currents, such as the supercurrent
itself and the energy-momentum tensor. The complete set
of conservation equations for these component Noether
currents can be embedded into one single superspace
equation. For the model (9) that we are considering, the
explicit form of the two-dimensional version of the Ferrara-
Zumino multiplet is given by [7,15]

Jþþ ¼ 1

2
½Dþ; D̄þ�K þ i

∂K
∂Φi ∂þþΦi þ c:c:;

J¼ ¼ 1

2
½D−; D̄−�K þ i

∂K
∂Φi ∂¼Φi þ c:c:; ð11Þ

and its conservation equation reads

D̄þJ¼ ¼ −D−Z; D̄−Jþþ ¼ DþZ; ð12Þ

where Z is a chiral N ¼ ð2; 2Þ superfield defined as [7,15]

Z ¼ 2WðΦiÞ: ð13Þ

As a check, by using the superspace equations of motion
(10), one can prove that Eq. (12) holds.
Generically, the Noether currents are defined up

to improvement terms. The procedure we follow is to
automatically introduce such terms in order to make the
currents compatible with supersymmetry. For example,
when considering the energy-momentum tensor on a flat
background, one can always add an improvement term
proportional to the background metric without spoiling the
conservation equation. Such an improvement term is
indeed important in the evaluation of the energy-momen-
tum tensor of the Volkov-Akulov model. In the super-
symmetric procedure presented below, it is automatically
taken into account.
Equivalently to the four-dimensional constructions

[16,17], a 2D Goldstino can be described by an N ¼
ð2; 2Þ chiral superfield X that satisfies the additional
nilpotency constraint

X2 ¼ 0: ð14Þ

This constraint admits a solution describing the complete
spontaneous breaking of N ¼ ð2; 2Þ supersymmetry. Such
a solution is a chiral superfield with expansion [11]
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X ¼ G−Gþ
F

þ θþG− þ θ−Gþ þ θþθ−F; ð15Þ

where Gþ and G− are the two Goldstini, while the field F
is auxiliary and it acquires a nonvanishing vacuum expect-
ation value.
The constraint (14) is implementing a nonlinear reali-

zation of supersymmetry. For future purposes, however, it
is convenient to maintain supersymmetry linearly realized
off shell. This can be done by introducing the constraint
(14) at the Lagrangian level, by means of a chiral Lagrange
multiplier superfield M. In view of the generic model (9),
we consider therefore a set

Φi ¼ fX;Mg; ð16Þ

governed by a Kähler potential K ¼ XX̄ and a super-
potential W ¼ fX þMX2, where f is set to be real. The
resulting Lagrangian is then

L ¼
Z

d4θXX̄ þ
�Z

d2θðfX þMX2Þ þ c:c:

�
: ð17Þ

We recall that, even ifM does not appear in K, the previous
discussion on the supercurrents and the superspace equa-
tions of motion still holds for the set (16). By varying
Eq. (17) with respect to M, we recover the constraint (14),
and the Lagrangian takes the form

L ¼
Z

d4θXX̄ þ
�
f
Z

d2θX þ c:c:

�
: ð18Þ

Expanding it in components and after integrating out F, the
Lagrangian reduces to Eq. (7). This verifies that Eq. (7) is
the two-dimensional Volkov-Akulov model describing the
interactions of two Goldstini.
The complete set of superspace equations of motion can

be obtained by varying Eq. (17) with respect to both X and
M. They read

D̄−D̄þX̄ ¼ −f − 2MX; X2 ¼ 0: ð19Þ

From these equations, we can also derive the constraint

XD̄−D̄þX̄ ¼ −fX; ð20Þ

which was proposed together with Eq. (14) in Ref. [16]. It
corresponds to eliminating only the auxiliary field F of the
nilpotent chiral superfield X, but it does not imply any other
equation of motion. In particular, even when imposing
Eq. (20), the fermions of the theory are still completely off
shell, and therefore it is possible to insert such a constraint
back into the Lagrangian without creating inconsistencies.
Imposing both Eqs. (14) and (20) on the Lagrangian (17),
we obtain then

L ¼ f
Z

d2θX; ð21Þ

which is real up to boundary terms. This Lagrangian (21) is
yet another way to write the Volkov-Akulov model in
superspace.
We now have all of the ingredients to evaluate the

supercurrent superfields for the Volkov-Akulov model.
Using the definitions of Jþþ, J¼, and Z from Eqs. (11)
and (13) and the Kähler potential and superpotential of
Eq. (17), together with Eqs. (14) and (20), we find that

Z ¼ 2fX; ð22Þ

and

Jþþ ¼ 2DþXD̄þX̄; J¼ ¼ 2D−XD̄−X̄: ð23Þ

When checking that these superfields satisfy Eq. (12) once
the superspace equations of motion are used, the following
equations stemming from Eq. (19) can be helpful:

D�XD̄−D̄þX̄ ¼ −fD�X: ð24Þ

Finally, notice that the Lagrange multiplier superfield M
has dropped out of the supercurrent superfields.
The TT̄ deformation.—For an N ¼ ð2; 2Þ supersymmet-

ric theory, Chang et al. [7] propose the following form for
the TT̄ deformation:

detðT½L�Þ ¼ 1

8

Z
d4θðJþþJ¼ − 2ZZ̄Þ: ð25Þ

We now investigate this proposal in the case of the Volkov-
Akulov model. From Eqs. (22) and (23), we directly find
that

JþþJ¼ − 2ZZ̄ ¼ −4f2XX̄; ð26Þ

and as a result, we have

detðT½L�Þ ¼ f2

2

Z
d4θXX̄ ¼ f3

2

Z
d2θX: ð27Þ

To study the flow equation, we can identify the supersym-
metry breaking scale with λ as in Ref. [6]. This means that

f2 ¼ 2λ−1; λ > 0: ð28Þ

We then vary the Volkov-Akulov action with respect to f.
In particular, we can use the off-shell superspace form (18)
that gives

∂L
∂f ¼

Z
d2θX þ

Z
d2θ̄ X̄ : ð29Þ
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Finally, with the use of the superspace constraint (20) and
the relation (28), we find that

∂L
∂λ ¼ −

f3

2

Z
d2θX ¼ − detðT½L�Þ: ð30Þ

The flow equation (1) is therefore verified for the Volkov-
Akulov model. Since the deformation parameter λ is related
to the scale of supersymmetry breaking through f2 ¼ 2=λ,
the limit of vanishing deformation—namely, λ → 0—cor-
responds to sending the scale of supersymmetry breaking to
infinity. In this case, the Volkov-Akulov theory (7) reduces
to a pair of free fermions [18]. We then notice an interesting
analogy with the case of the free scalar presented in the
Introduction.
Discussion.—In this Letter, we showed that the

2D Volkov-Akulov model is a solution to the TT̄ flow
equation. We adopted a manifestly supersymmetric
approach, following the proposal of Ref. [7], but one
can verify our result independently by inserting Eq. (7)
directly into Eq. (1). We also performed this calculation as a
consistency check.We recall that the Volkov-Akulov model
is universal—namely, it describes an indispensable part of
the low energy spectrum of any model with spontaneous
supersymmetry breaking. Therefore our findings apply to a
very large class of theories.
To the best of our knowledge, we have presented the first

example of a purely fermionic construction that solves the
flow equation (1) in a closed form and that manifests
nonlinearly realizedN ¼ ð2; 2Þ supersymmetry. Indeed, in
other constructions, as in Ref. [9], there is no super-
symmetry present in the pure fermionic models and no
hint that the TT̄ deformation of the free fermion could have
a nonlinearly realized supersymmetry. On the other hand, in
Ref. [7], it was suggested that the pure fermionic sectors of
their constructions should be themselves TT̄ deformations;
however these fermionic Lagrangians were not explicitly
presented. Similarly, more recently in Ref. [19], a large
class of models were studied that included fermionic
systems, but again there was no indication of nonlinear
supersymmetry.
Our findings suggest a connection between TT̄ defor-

mations and nonlinear supersymmetry that would be worth
investigating for matter-coupled Volkov-Akulov models as
well. Other systems with N ¼ ð2; 2Þ supersymmetry were
recently proposed in Ref. [7] and hint at a relation between
(partial) supersymmetry breaking and TT̄ deformations.
This direction deserves further study. It is also worth
investigating different types of supersymmetry breaking
models, for example, those in Ref. [11], and understanding
which of these Lagrangians can be interpreted as TT̄
deformations. Given that 2D N ¼ ð2; 2Þ supersymmetry
corresponds to 4D N ¼ 1, a generalization of our result to
higher dimensions is also compelling. Recalling that the 4D
Volkov-Akulov model describes the Goldstino on an

anti-D3-brane [20], one might be able to give an inter-
pretation of TT̄ deformations in terms of extended objects
in string theory. On a similar footing, the structure of
Lagrangians with nonlinearly realized supersymmetry may
also pave the way to study the TT̄ deformations in higher
dimensions [5,9,21,22].
Finally, let us note that one of the most interesting

aspects of the TT̄ deformation is that, classically, it gives
rise to the Nambu-Goto action as a deformation of the free
scalar. Similarly, the Born-Infeld action that relates to
effective actions for D-branes arises as a TT̄ deformation
of the free Maxwell theory [5,21]. It is therefore gratifying
to see that the Volkov-Akulov model finds its place within
these fundamental actions.
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