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Only with the simultaneous estimation of multiple parameters are the quantum aspects of metrology
fully revealed. This is due to the incompatibility of observables. The fundamental bound for multiparameter
quantum estimation is the Holevo Cramér-Rao bound (HCRB) whose evaluation has so far remained
elusive. For finite-dimensional systems we recast its evaluation as a semidefinite program, with reduced
size for rank-deficient states. We show that it also satisfies strong duality. We use this result to study phase
and loss estimation in optical interferometry and three-dimensional magnetometry with noisy multiqubit
systems. For the former, we show that, in some regimes, it is possible to attain the HCRB with the optimal
(single-copy) measurement for phase estimation. For the latter, we show a nontrivial interplay between the
HCRB and incompatibility and provide numerical evidence that projective single-copy measurements
attain the HCRB in the noiseless 2-qubit case.
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Introduction.—Measuring physical quantities with ever
increasing precision underlies both technological and
scientific progress. Quantum mechanics plays a central
role in this challenge. On the one hand, the unavoidable
statistical uncertainty due to quantum fluctuations is a
fundamental limitation to high precision metrology. On the
other hand, quantum-enhanced metrological schemes that
take advantage of nonclassical features, such as entangle-
ment, coherence, or squeezing, have been proposed and
implemented experimentally [1–7]. Myriad metrological
applications are intrinsically multiparameter [8], e.g.,
sensing electric, magnetic, or gravitational fields [9], force
sensing [10,11], imaging [12,13], and superresolution
[14–18]. As a consequence, the field of multiparameter
quantum metrology has been growing rapidly, both theo-
retically [19–39] and experimentally [40–44].
The mathematical framework behind quantummetrology

is quantum estimation theory [45], pioneered by Helstrom
[46–48] and Holevo [49–51]. In particular, multiparameter
quantum estimation highlights a defining trait of quantum
theory, absent in single-parameter estimation: incompati-
bility of observables [52,53]. Because of this, multipara-
meter quantum estimation is much more challenging,
but also serves as a test bed for understanding quantum
measurements.
Precision bounds for multiparameter estimation are given

in terms of matrix inequalities for the mean square error
matrix (MSEM) Σ, see Eq. (1). However, matrix bounds are,
in general, not tight for multiparameter quantum estimation.
Instead, the Holevo Cramér-Rao bound (HCRB) [51,54] is
the most fundamental scalar lower bound imposed by
quantum mechanics on the weighted mean square error

(WMSE) Tr½WΣ� (for a positive definite W). The HCRB
represents the best precision attainable with global measure-
ments on an asymptotically large number of identical copies
of a quantum state [55–59]. Implementing such collective
measurements is exceptionally challenging [41,60], but in
some cases the HCRB is attained by single-copy measure-
ments: for pure states [61] and for displacement estimation
with Gaussian states [51].
Despite its importance, the HCRB has been used more as

a mathematical object in asymptotic quantum statistics [62]
than applied to concrete metrological problems. Indeed, the
HCRB is considered hard to evaluate, even numerically,
being defined through a constrained minimization over a
set of operators. Closed-form results for nontrivial cases are
known only for qubits [63], two-parameter estimation with
pure states [64], and two-parameter displacement estima-
tion with two-mode Gaussian states [65,66], while a
numerical investigation has been attempted for pure states
and Hamiltonian parameters [67]. The evaluation of the
HCRB thus remains a major roadblock in the development
of multiparameter quantum metrology.
This Letter removes this roadblock by providing a recipe

for evaluating the HCRB numerically for finite-dimen-
sional systems. Our main result recasts the optimization
required for evaluating the HCRB as a semidefinite pro-
gram (SDP). This was shown only for displacement
estimation with Gaussian states [66]. We present an SDP
whose complexity grows with the rank of the state instead
of a naive dependence on the Hilbert space dimension.
The application of our recipe to evaluate the HCRB for
two well-known metrological problems provides new
insights. In particular, we provide numerical evidence that
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single-copy attainability of the HCRB with projective
measurements is possible in nontrivial cases.
Multiparameter quantum estimation.—We consider

a generic finite-dimensional quantum system with
Hilbert space H ≅ Cd, denote the space of linear operators
(d × d matrices) on H as LðHÞ ≅ Cd×d, and the space of
observables (Hermitian matrices) as LhðHÞ.
The state of the system ρθ ∈ LhðHÞ is parametrized by a

real vector ðθ1;…; θnÞT ¼ θ ∈ Θ ⊂ Rn [68], the collection
fρθg for all the values of θ is called the quantum statistical
model. The goal is to simultaneously estimate all n
parameters by measuring possibly multiple copies of ρθ.
After measurement, classical data are processed with an
estimator θ̃, a function from the space of measurement
outcomes Ω to the space of parameters Θ. The MSEM of
the estimator

ΣθðΠ; θ̃Þ ¼
X

ω∈Ω
pðωjθÞ½θ̃ðωÞ − θ�½θ̃ðωÞ − θ�T; ð1Þ

quantifies the precision of the estimation. The pro-
bability of observing the outcome ω is given by the
Born rule pðωjθÞ ¼ TrðρθΠωÞ; the measurement is
described by a positive operator valued measure
(POVM):Π ¼ fΠω ≽ 0;ω ∈ ΩjPω∈Ω Πω ¼ 1dg, without
loss of generality, we consider Ω to be a finite set [69].
We consider locally unbiased estimators that satisfy

X

ω∈Ω
½θ̃iðωÞ − θi�pðωjθÞ ¼ 0;

X

ω∈Ω
θ̃iðωÞ

∂pðωjθÞ
∂θj ¼ δij:

ð2Þ
For this class of estimators, the matrix Cramér-Rao bound
(CRB) on the MSEM is [70]

ΣθðΠ; θ̃Þ ≽ Fðρθ;ΠÞ−1 ð3Þ
(A ≽ 0 if and only if A is positive semidefinite); the
classical Fisher information matrix (FIM) Fðρθ;ΠÞ is
defined as

Fðρθ;ΠÞ ¼
X

ω∈Ω
pðωjθÞ

�∂ logpðωjθÞ
∂θ

��∂ logpðωjθÞ
∂θ

�
T
;

ð4Þ
where ∂fðθÞ=∂θ is the gradient of the function f. For
locally unbiased estimators, the MSEM is the covariance
matrix (CM) and the bound is attainable: there is always an
estimator in this class with a CM equal to the inverse FIM
[62,71]. To meaningfully compare the precision of different
multiparameter estimators, it is customary to consider
a scalar cost function, the WMSE Tr½WΣθðΠ; θ̃Þ�, with
0 ≺ W ∈ Sn (Sn is the set of real symmetric n-dimensional
matrices).
The most widely known lower bound for the MSEM

in quantum estimation relies on the (real symmetric)

quantum Fisher information matrix (QFIM), defined as
JSij ¼ ReðTr½ρθLiLj�Þ, where Li ∈ LhðHÞ are the symmet-
ric logarithmic derivatives (SLDs) satisfying 2∂ρθ=∂θi ¼
Liρθ þ ρθLi [45–47]. For single-parameter estimation,
the SLD bound is always attainable by measuring single
copies of the state; however for multiple parameters it is in
general not attainable. Moreover, as a consequence of the
noncommutativity of operators, for multiparameter estima-
tion the QFIM is not the unique quantum generalization of
the classical FIM [72]. Another important one is the
(complex Hermitian) matrix JRij ¼ Tr½ρθL̃iL̃

†
j �, where the

right logarithmic derivatives (RLDs) L̃i ∈ LðHÞ satisfy
∂ρθ=∂θi ¼ ρθL̃i [73,74]. Both matrices give valid matrix
bounds ΣθðΠ; θ̃Þ ≽ ðJfS;RgÞ−1. The corresponding scalar
bounds for the WMSE are CS

θðρθ;WÞ ¼ Tr½WðJSÞ−1� and
CR
θ ðρθ;WÞ¼Tr½WReðJRÞ−1�þjj ffiffiffiffiffi

W
p

ImðJRÞ−1 ffiffiffiffiffi
W

p jj1,
where jjAjj1 ¼ Tr½

ffiffiffiffiffiffiffiffiffi
A†A

p
� is the trace norm [51,71,75].

Whether CS
θ is larger than CR

θ depends on the model.
Holevo introduced a tighter bound, the HCRB CH

θ
[50,51],

Tr½WΣθðΠ; θ̃Þ� ≥ CH
θ ≥ max fCS

θ; C
R
θ g: ð5Þ

Both inequalities can be tight. In particular [76],

CH
θ ðρθ;WÞ ¼ CS

θðρθ;WÞ ⇔ Dθ ¼ 0n; ð6Þ

where ðDθÞij ≡ ImðTr½LjLiρθ�Þ is a skew-symmetric
matrix [71]. Condition (6) is called weak commutativity
and quantum statistical models satisfying it are asymptoti-
cally classical [77].
Computing the bound with an SDP.—The HCRB is

obtained as the result of the following minimization
[51,75]:

CH
θ ðρθ;WÞ ¼ min

V∈Sn;X∈Xθ

ðTr½WV�jV ≽ Z½X�Þ; ð7Þ

with the Hermitian n × n matrix Z½X�ij ¼ Tr½XiXjρθ� and
the collection X of operators Xi ∈ LhðHÞ in the set

Xθ ¼ fX ¼ ðX1;…; XnÞjTr½Xi∂jρθ� ¼ δijg: ð8Þ
For a density matrix with rank r < d, we can restrict the

operators Xi to the quotient space Lr
hðHÞ ¼ LhðHÞ=

Lh½kerðρθÞ�, with dimension d̃ ¼ 2dr − r2. For any
X ∈ LhðHÞ, any scalar quantity evaluated in the eigenbasis
of ρθ is independent of the diagonal block of X corre-
sponding to the kernel of ρθ [51,78] (see Sec. I of the
Supplemental Material [79] for details).
We introduce a basis λi of Hermitian operators for

Lr
hðHÞ, orthonormal with respect to the Hilbert-Schmidt

inner product Tr½λiλj� ¼ δij. Using such a basis, each
operator Xi ∈ Lr

hðHÞ corresponds to a real valued vector
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xi ∈ Rd̃. With some abuse of notation, we use X to denote
also the collection of these real vectors, i.e., the d̃ × n real
matrix with xi as columns. The quantum state also belongs
to Lr

hðHÞ and therefore corresponds to a vector sθ in the
chosen basis. This corresponds to the generalized Bloch
vector [89,90] when working in the full space LhðHÞ.
A quantum state induces an inner product on Lr

hðHÞ via
Z½X�ij ¼ Tr½XiXjρθ� ¼ xTi Sθxj; ð9Þ

where Sθ ≽ 0 is the Hermitian matrix representing the inner
product in the chosen basis. With this choice, we can write
Z½X� ¼ XTSθX so that the matrix inequality on the rhs of
Eq. (7) reads V ≽ XTSθX. Crucially, this last matrix
inequality can be converted to a linear matrix inequality
(LMI) by using the Schur complement condition for
positive semidefiniteness [91],

V − B†B ≽ 0 ⇔

�
V B†

B 1

�
≽ 0; ð10Þ

for any matrix B and identity matrix 1 of appropriate
size. Thus, we can rewrite the minimization problem in
Eq. (7) as

minimize
V∈Sn;X∈Rd̃×n

Tr½WV�

subject to
�

V XTR†
θ

RθX 1r̃

�
≽ 0

XT ∂sθ
∂θ ¼ 1n; ð11Þ

where the matrix Rθ can be any r̃ × d̃ matrix [with
rd ¼ rankðSθÞ ≤ r̃ ≤ d̃] satisfying Sθ ¼ R†

θRθ, e.g., a
Cholesky-like decomposition. Here ∂sθ=∂θ is a matrix
with the vector components of the operators ∂ρθ=∂θi ¼∂iρθ as columns; this is the Jacobian matrix of sθ only if the
basis fλig is parameter independent. The program (11) can
be readily recognized as a convex minimization problem
[92], the solutions of an LMI form a convex set and the
objective function is linear. It can be converted to an SDP
(see Sec. II of the Supplemental Material [79] for details),
which can be solved numerically using efficient and readily
available algorithms with a guarantee of global optimality.
In practice, the program (11) can be fed directly to a
numerical modeling framework, such as CVX [93] or
YALMIP [94].
For every convex minimization, called the primal prob-

lem, there exists a maximization, the dual problem, that
yields a lower bound to the solution of the former. This
property is known as weak duality [92]. Strong duality
means that the solution to the primal and the dual problems
coincide. Not every SDP satisfies it, but it is a desirable
property that certifies an unambiguous solution. A suffi-
cient condition for strong duality is Slater’s condition.

Qualitatively this means that there must be optimization
variables satisfying the inequality constraints strictly.
We now show that our convex optimization problem (11)

satisfies Slater’s condition as long as JS≻0, i.e., a
nonsingular quantum statistical model. We denote by
L the matrix with the real vectors representing the
SLDs as columns. Upon noticing that ðLT∂sθ=∂θÞij ¼
Tr½Li∂jρθ� ¼ ðJSÞij, it is easy to show that the matrices
X ¼ LðJSÞ−1 and V ¼ ðJSÞ−1 þ V 0, with an arbitrary V 0≻0,
satisfy both constraints in (11). For this choice of V and X,
the matrix inequalities in (7) and (11) are strict.
An analytical optimization over V in (7) leads to [71]

hθðXÞ ¼ min
V∈Sn

ðTr½WV�jV ≽ Z½X�Þ ð12Þ

¼ Tr½WReZðXÞ� þ jj
ffiffiffiffiffi
W

p
ImZ½X�

ffiffiffiffiffi
W

p
jj1; ð13Þ

so that CH
θ ðρθ;WÞ ¼ minX∈Xθ

hθðXÞ; no general closed-
form solution for this last optimization is known. From our
previous convexity argument, we also infer that hθðXÞ is a
convex function of X, being a partial minimization of an
affine function over a convex set [92]. This may not be
apparent from (13) since the second term is not convex; the
sum of the two terms is convex as long as the matrix Z½X� is
positive semidefinite and the identity (10) can be used.
Optical interferometry with loss.—Optical interferom-

etry, where the goal is to measure a phase difference
between two optical paths, is a prime example of quantum
metrology [2]. In some instances, one may wish to estimate
both the phase and the loss induced by a sample in one arm
of a Mach-Zehnder interferometer [95].
We consider initial states with a fixed photon number N

across two modes jψ ini ¼
P

N
k¼0 ckjk; N − ki. These

include, for example, N00N states and Holland-Burnett
states [96]. The evolved state after the lossy interferometer,
with one arm characterized by a transmissivity η and a phase
shift ϕ, has a direct sum form ρϕ;η ¼ ⨁N

k¼0pljψ lihψ lj,
where each jψ li corresponds to l lost photons [97] (see
Sec. III of the Supplemental Material [79] for details).
For this problem, it is possible to obtain the SLDsLϕ andLη

analytically, as well as the QFIM JS ¼ diagðJSϕϕ; JSηηÞ.
Crucially, this multiparameter estimation problem is never
asymptotically classical, since [95]

ImðTr½LϕLηρϕ;η�Þ ¼ −
JSϕϕ
2η

: ð14Þ

Hence, the weak commutativity condition (6) never holds if
the model is nonsingular; thus, we get CH

θ > CS
θ > CR

θ ¼ 0

(the RLD bound is completely uninformative [95]).
Equation (14) also means that phase and loss cannot be
jointly estimated with the same precision obtainable by
estimating each parameter individually and there exists a
trade-off between precisions. Following Crowley et al. [95]
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we focus on a strategy to estimate ϕ with the best possible
precision and still get an estimate of η, by considering the
projective POVM Πϕ obtained from the spectral decom-
position of the SLD Lϕ.
More concretely, we study Holland-Burnett states, a

family of states particularly resilient to imperfections [98];
we also fix W ¼ 12. Figure 1 shows the classical CRB
CC
ϕ ¼ Tr½Fðρϕ;η;ΠϕÞ−1�, along with the HCRB (computed

by solving the SDP numerically) and the SLD-CRB CS
ϕ;η,

as a function of η for N up to 14. Figure 1(a) shows that the
HCRB is over 30% tighter than the SLD bound, especially
for intermediate transmissivities. Figure 1(b) shows that the
measurement we consider attains the HCRB for certain
values of N and η; i.e., the relative difference is zero up to
numerical noise. Even when the bound is not attained, the
relative difference remains small at around 4% for N ¼ 14.
For generic one-photon states (N ¼ 1), we have found

the analytical conditions for the HCRB to be attained byΠϕ.
For jψ ini ¼ c0j0; 1i þ c1j1; 0i (with jc0j2 þ jc1j2 ¼ 1),
we have CC

ϕ ¼ CHðρϕ;η; 12Þ as long as jc1j2 ≥ 1=2 or
ð1 − jc1j2=jc0j2Þ=2 ≤ η ≤ 1. The relative difference
1 − CH=CC

ϕ is at most 4.9% and always zero for η ≥ 1=2
(see Sec. III. A of the Supplemental Material [79] for
details). A numerical analysis on random states for higher
values ofN suggests that there is indeed a threshold value of
η, increasing with N, above which Πϕ attains the HCRB.
Finally, we remark that working in the space Lr

hðHÞ
provides a distinct advantage for the numerics, since the
Hilbert space dimension is ðN2 þ 3N þ 2Þ=2, while ρϕ;η
has rank r ¼ N þ 1,whereby d̃ ¼ ðN þ 1Þ3 < ðN þ 1Þ4.
3D magnetometry.—Noiseless 3D magnetometry,

another illustrative example of multiparameter quantum

metrology, has been studied terms of the QFIM [9]. Here,
we highlight the necessity of using the HCRB for this
problem and present results on 3D magnetometry using M
qubits in the presence of dephasing noise. The parameters
to be estimated φ ¼ ðφ1;φ2;φ3Þ appear via the single-
qubit HamiltonianHðjÞðφÞ ¼ φ · σðjÞ, where σðjÞ is a vector
of Pauli operators acting on the jth qubit. The para-
meters are imprinted on the probe state via the unitary
Uφ ¼ ⊗M

j exp½−iHðjÞðφÞ�. This is followed by local
dephasing along the z axis described by the single-qubit
map 2Eγ½ρ� ¼ ð1þ ffiffiffiffiffiffiffiffiffiffi

1 − γ
p Þρþ ð1 − ffiffiffiffiffiffiffiffiffiffi

1 − γ
p Þσzρσz, with

γ ∈ ½0; 1�; an approximation valid when the sensing time
is short.
We use as probe states the family of 3D–Greenberger-

Horne-Zeilinger (GHZ) states

jψ3D-GHZ
M i ¼ 1

N

X3

k¼1

jϕþ
k i⊗M þ jϕ−

k i⊗M; ð15Þ

which was shown to present Heisenberg scaling in the
noiseless case [9]; jϕ�

k i are the eigenvectors corresponding
to the �1 eigenvalues of the kth Pauli matrix and N is
the normalization. The final state for which we compute
the bound is ρφ ¼ E⊗M

γ ½Uφjψ3D-GHZ
M ihψ3D-GHZ

M jU†
φ�; for the

numerical results, we choose equal parameter values
φi ¼ 1 ∀ i and W ¼ 13.
In Fig. 2 we show the nontrivial relationship between the

HCRB, the SLD-CRB, and incompatibility for this quantum
statistical model, as a function of the dephasing strength γ.
We quantify the incompatibility of the model with the
magnitude of the matrix Dθ, capturing the violation of
the weak commutativity condition (6); in particular, we use
the Frobenius norm jjDφjj2F ¼ P

ij jðDφÞijj2. Figure 2(a)
shows that the relative difference 1 − CS=CH is monoton-
ically decreasing for 2 and 3 qubits, while it has a non-
monotonic behavior for 5 or more qubits. Figure 2(b) shows
that this behavior is not always reflected at the level of
incompatibility; this is remarkably different from the simple
monotonic relationship found for two-parameter pure state
models [61,64]. Furthermore, while the matrices Dθ have a
comparable magnitude for different number of qubits, the
relative differences do not, e.g., being around 0.2% for 5
qubits and around 30% for 2 qubits.
Our SDP formulation grants us a previously inaccessible

ease in the evaluation of the HCRB. In turn, this enables us
to get these glimpses into the noncommutative information
geometry of three-parameter mixed state problems of
nontrivial dimension. From this example, we see that the
pair of matrices JS and Dθ are not sufficient for a complete
description of a given state’s performance for multipara-
meter estimation.
Finally, we concentrate on the noiseless (γ ¼ 0) case

with 2 qubits, noting that a single qubit does not allow us to
estimate all the components of φ [9]. In Fig. 2 we see that

(a)

(b)

FIG. 1. Relative difference between different CRBs for
simultaneous estimation of phase and loss, as a function of the
transmissivity η, for N-photons Holland-Burnett probe states and
W ¼ 12. (a) Relative difference between the SLD-CRB
and the HCRB. (b) Relative difference between the HCRB
and the classical CRB for the optimal phase measurement
CC
ϕ ¼ Tr½Fðρϕ;η;ΠϕÞ−1�; this quantity is zero (up to numerical

noise) for N ≤ 6.
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for M ¼ 2 the SLD bound is considerably looser than the
HCRB, with a relative difference around 30% for γ ¼ 0.
On the contrary, we conjecture that the HCRB is attainable
with single-copy projective measurements. We base this on
the numerical equality between the HCRB and a numerical
minimization of the classical scalar CRB over all 2-qubit
projective measurements. For 5000 random initial states
with parameter values taken from five sets, the relative
difference between the two quantities was always found to
be smaller than 10−4 (see Sec. IV.A of the Supplemental
Material [79] for details). While for pure states the HCRB
is always attainable with single-copy measurements, the
optimal POVM needs not be projective [61], making it
harder to implement experimentally. This finding shows
that optimal protocols for 3D magnetometry with 2 qubits
may be not too far from experimental reach.
Conclusions.—We have shown how to evaluate the

HCRB by solving an SDP, making it more easily accessible
than previously believed. This enabled us to study two
examples—optical interferometry and 3D magnetometry—
and gather numerical evidence that the HCRB is attainable
by single-copy projective measurements, whereas the SLD
bound is not. These findings suggest that there may be
further unstudied cases where the HCRB is easier to attain
than naively expected. They also illustrate the potential of
our formulation to enable new discoveries in multipara-
meter quantum estimation, which should aid a deeper
quantitative understanding of quantum measurements more
generally.
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