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We present an exact solution for the probability density function Pðτ ¼ tmin − tmaxjTÞ of the time
difference between the minimum and the maximum of a one-dimensional Brownian motion of duration T.
We then generalize our results to a Brownian bridge, i.e., a periodic Brownian motion of period T. We
demonstrate that these results can be directly applied to study the position difference between the minimal
and the maximal heights of a fluctuating (1þ 1)-dimensional Kardar-Parisi-Zhang interface on a substrate
of size L, in its stationary state. We show that the Brownian motion result is universal and, asymptotically,
holds for any discrete-time random walk with a finite jump variance. We also compute this distribution
numerically for Lévy flights and find that it differs from the Brownian motion result.
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The properties of extremes of a stochastic process or time
series of a given duration T are of fundamental importance
in describing a plethora of natural phenomena [1–5]. For
example, this time series may represent the amplitude of
earthquakes in a specific seismic region, the amount of
yearly rainfall in a given area, the temperature records in a
given weather station, etc. The study of extremes in such
natural time series has gained particular relevance in the
recent context of global warming in climate science [6–10].
Extremal properties also play an important role for sto-
chastic processes that are outside the realm of natural
phenomena. For example, in finance, a natural time series is
the price of a stock for a given period [11–14]. Knowing the
maximum or the minimum value of a stock during a fixed
period is obviously important, but an equally important
question is “When does the maximum (minimum) value of
the stock occur within this period [0, T]?” Let tmax and tmin
denote these times (see, e.g., Fig. 1). For a generic
stochastic process, computing the statistics of tmax and
tmin is a fundamental and challenging problem. The
simplest and the most ubiquitous stochastic process is
the one-dimensional Brownian motion (BM) of a given
duration T for which the probability distribution function
(PDF) of tmax can be computed exactly [15–18]:

PðtmaxjTÞ ¼
1

π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tmaxðT − tmaxÞ

p ; 0 ≤ tmax ≤ T: ð1Þ

The cumulative distribution Probðtmax < tjTÞ ¼
ð2=πÞ sin−1ð ffiffiffiffiffiffiffiffi

t=T
p Þ is known as the celebrated arcsine

law of Lévy [15]. By the symmetry of the BM, the
distribution of tmin is also described by the same arcsine
law [Eq. (1)]. In the past decades, the statistics of tmax has
been studied for a variety of stochastic processes, going
beyond BM. Examples include BM with drift [19,20],

constrained BM [21–23] (such as the Brownian bridge and
the Brownian excursion; see also [23,24] for the real space
renormalization group method), Bessel processes [23],
Lévy flights [17,25], the random acceleration process
[26], fractional BM [27,28], run-and-tumble particles
[29], etc. The statistics of tmax has also been studied in
multiparticle systems, such as N independent BMs [30], as
well as for N vicious walkers [31]. Moreover, the arcsine
law and its generalizations have been applied in a variety of
situations, such as in disordered systems [32], stochastic
thermodynamics [33], finance [34,35], and sports [36].
Although the marginal distributions of tmax and tmin are

given by the same arcsine law in Eq. (1) for a BM due its
symmetry, one expects that tmax and tmin are strongly

FIG. 1. Typical trajectory of Brownian motion xðtÞ during time
interval [0, T], starting from xð0Þ ¼ 0. The global maximum xmax
occurs at time tmax and the global minimum −xmin at tmin. The
final position xðTÞ, measured with respect to −xmin ≤ 0, is
denoted by xf. The total time interval [0, T] is divided into three
segments of ½0; tmax� (I), ½tmax; tmin� (II), and ½tmin; T� (III) for the
case of tmin > tmax.
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correlated. For example, if the maximum occurs at a certain
time, it is unlikely that the minimum occurs immediately
after or before. These anticorrelations are encoded in the
joint distribution Pðtmin; tmaxjTÞ, which does not factorize
into two separate arcsine laws. These anticorrelations also
play an important role for determining the statistics of
another naturally important observable, namely, the time
difference between tmin and tmax: τ ¼ tmin − tmax. In the
context of finance, where the price of a stock is modeled by
the exponential of a BM, τ represents the time difference
between the occurrences of the minimum and the maxi-
mum of the stock price. For instance, if tmax < tmin as in
Fig. 1, an agent would typically sell her or his stock when
the price is the highest and then wait an interval τ before
rebuying the stock because the stock is the cheapest at time
tmin. Hence, a natural question is “How long should one
wait between the buying and the selling of the stock?” In
other words, one would like to know the PDF PðτjTÞ of the
time difference τ. To calculate this PDF, we need to know
the joint distribution Pðtmin; tmaxjTÞ. Computing this joint
distribution and the PDF PðτjTÞ for a stochastic process is
thus a fundamentally important problem.
In this Letter, by using a path-integral method, we

compute the joint distribution Pðtmin; tmaxjTÞ exactly for
a BM of a given duration T. This joint distribution does not
depend on the initial position x0. Hence, without loss of
generality, we set x0 ¼ 0. We also generalize our results to
the case of a Brownian bridge (BB), which is a periodic BM
of period T. Using these results, we first exactly compute
the covariance function covðtmin; tmaxÞ ¼ htmintmaxi −
htminihtmaxi that quantifies the anticorrelation between
tmax and tmin. We find

covBMðtmin; tmaxÞ ¼ −
7ζð3Þ − 6

32
T2 ≈ −0.0754 T2

for a BM [with ζðzÞ being the Riemann zeta function],
whereas

covBBðtmin; tmaxÞ ¼ −
π2 − 9

36
T2 ≈ −0.0241 T2

for a BB. From this joint distribution, we also exactly
compute the PDF PðτjTÞ for the BM, as well as for the BB.
We show that, for a BM of duration T, starting at some
fixed position, PðτjTÞ has a scaling form for all τ and T:
PðτjTÞ ¼ ð1=TÞfBMðτ=TÞ, where the scaling function
fBMðyÞ with −1 ≤ y ≤ 1 is given by

fBMðyÞ ¼
1

jyj
X∞
m¼1

ð−1Þmþ1tanh2
 
mπ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jyj

1 − jyj

s !
: ð2Þ

Clearly, fBMðyÞ is symmetric around y ¼ 0 but is non-
monotonic as a function of y (see Fig. 2, where we also
compare it with numerical simulations, finding excellent
agreement). This function has asymptotic behaviors

fBMðyÞ ≈
y→0

8

y2
e−ðπ=

ffiffi
y

p Þ; fBMðyÞ ≈
y→1

1

2
: ð3Þ

For a BB, we get

fBBðyÞ ¼ 3ð1 − jyjÞ
X∞
m;n¼1

ð−1Þmþnm2n2

½m2jyj þ n2ð1 − jyjÞ�5=2 ; ð4Þ

which is again symmetric around y ¼ 0 (see the inset of
Fig. 2) and has the asymptotic behaviors

fBBðyÞ ≈
y→0

ffiffiffi
2

p
π2

y9=2
e−ðπ=

ffiffi
y

p Þ; fBBðyÞ ≈
y→1

ffiffiffi
2

p
π2

ð1−yÞ7=2e
−½π=ð ffiffiffiffiffiffi1−y

p Þ�:

ð5Þ

Next, we demonstrate that these scaling functions are
universal in the sense of the central limit theorem.
Indeed, consider a time series of n steps generated by
the positions of a random walker evolving via the Markov
rule

xk ¼ xk−1 þ ηk; ð6Þ

starting from x0 ¼ 0, where ηk are independent and
identically distributed random jump variables, with each
drawn from a symmetric and continuous PDF pðηÞ. For
all such jump distributions with a finite variance
σ2 ¼ R η2pðηÞdη, we expect that, for large n, the corre-
sponding PDF of the time difference of τ ¼ tmin − tmax
would converge to the same scaling function fBMðyÞ as
the BM. Similar result holds for the BB as well. We
confirm this universality by an exact computation for

FIG. 2. Scaled distribution TPðτjTÞ plotted as a function of τ=T
for BM (solid line corresponds to exact scaling function fBMðyÞ
in Eq. (2), whereas filled dots are the results of simulations).
Inset: the same scaled distribution for the Brownian bridge where
the exact scaling function fBBðyÞ is given in Eq. (4).
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pðηÞ ¼ ð1=2Þe−jηj, and we do this numerically for other
distributions with finite σ (see Fig. 3). In contrast, for Lévy
flights, σ2 is divergent because pðηÞ has a heavy tail pðηÞ ∼
1=jηjμþ1 for large η, with an index of 0 < μ < 2. In this
case, the PDF of τ is characterised by a different scaling
function parametrized by μ that we compute numerically.
Finally, we show how our results can be applied to study
similar observables for heights in the stationary state of a
Kardar-Parisi-Zhang (KPZ) or Edwards-Wilkinson (EW)
interface in one dimension on a finite substrate of size L.
Brownian motion.—We start with a BM xðtÞ over the

time interval t ∈ ½0; T�, starting at xð0Þ ¼ 0 as in Fig. 1. Let
xmax ¼ xðtmaxÞ and −xmin ¼ xðtminÞ denote the magni-
tude of the maximum and the minimum in [0, T].
Our strategy is to first compute the joint distribution
Pðxmin; xmax; tmin; tmaxjTÞ of these four random variables
and then integrate out xmax and xmin to obtain the joint PDF
Pðtmin; tmaxjTÞ. We note that, although the actual values
xmax and xmin do depend on the starting position x0, their
locations tmax and tmin are independent of x0 because it
corresponds to a global shift in the position but not in time.
The joint distribution of xmax and xmin can be computed by
integrating out tmax and tmin (see, e.g., [37,38]). Without
any loss of generality, we will assume that tmax < tmin (the
case tmin < tmax can be analyzed in the same way). The
grand joint PDF Pðxmin; xmax; tmin; tmaxjTÞ can be computed
by decomposing the time interval [0, T] into three seg-
ments: (I) ½0; tmax�, (II) ½tmax; tmin�, and (III) ½tmin; T�. In the
first segment (I), the trajectory starts at zero at time t ¼ 0,
arrives at xmax at time tmax, and stays inside the space
interval xðtÞ ∈ ½−xmin; xmax� during ½0; tmax� (see Fig. 1). In

the second segment (II), the trajectory starts at xmax at time
tmax and arrives at −xmin at time tmin, and it stays inside the
box ½−xmin; xmax�. Finally, in the third segment (III), the
trajectory starts at−xmin at time tmin and stays inside the box
½−xmin; xmax� during ½tmin; T�. Clearly, the trajectory stays
inside the box ½−xmin; xmax� because, by definition, it can nei-
ther exceed its maximum value xmax nor go below its mini-
mum −xmin. Let us also denote by M ¼ xmin þ xmax ≥ 0.
To enforce the trajectory to stay inside the box, one needs

to impose absorbing boundary condition at both xmax and
−xmin. However, for a continuous-time Brownian motion, it
is well known that one cannot simultaneously impose an
absorbing boundary condition and require the trajectory to
arrive exactly at the absorbing boundary at a certain time.
One way to get around this problem is to introduce a cutoff
ϵ such that the actual values of the maximum and the
minimum are, respectively, xmax − ϵ and −xmin þ ϵ; see
Fig. S1 in the Supplemental Material (SM) [39]. One then
computes the probability of the trajectory for a fixed ϵ and
eventually takes the limit ϵ → 0. We use the Markov
property of the process to express the total probability of
the trajectory as the product of the probabilities of the three
individual time segments. These probabilities can be
expressed in terms of a basic building block or Green’s
function, which is defined as follows. Let GMðx; tjx0; t0Þ
denote the probability density for a BM, starting at x0 at t0,
to arrive at x at time t while staying inside the box xðtÞ ∈
½0;M� during ½t0; t�. Note that x; x0 ∈ ½0;M�. This Green’s
function can be computed by solving the Fokker-Planck
equation, ∂tGM ¼ ð1=2Þ∂2

xGM, with absorbing boundary
conditions of GM ¼ 0 at both x ¼ 0 and x ¼ M [46,47]:

GM ¼ 2

M

X∞
n¼1

sin

�
nπx
M

�
sin

�
nπx0
M

�
e−½ðn2π2Þðt−t0Þ=2M2�:

ð7Þ

We first shift the origin in Fig. 1 to −xmin. The proba-
bility of the trajectory in the three segments is then
proportional, respectively, to (I) GMðM − ϵ; tmaxjxmin; 0Þ,
(II) GMðϵ; tminjM − ϵ; tmaxÞ, and (III)Z

M

0

GMðxf ; Tjϵ; tminÞdxf ;

where, in the last segment, we integrate over the final
position xf ¼ xðTÞ þ xmin of the trajectory inside the box
[0;M] (see Fig. 1). Hence, Pðxmin; xmax; tmin; tmaxjTÞ is
given, up to an overall normalization factor, by the product
of three individual pieces. Using the Green’s function in
Eq. (7), one can explicitly compute this grand PDF and
finally integrate over xmax and xmin to obtain the joint PDF
Pðtmin; tmaxjTÞ (see SM [39] for details). From the latter, we
compute the covariance of tmin and tmax explicitly, as given
above. Also, by integrating the joint PDF Pðtmin; tmaxjTÞ
over tmax and tmin with tmin − tmax ¼ τ fixed, we explicitly

FIG. 3. Scaled distribution nPðτjnÞ vs τ=n for random walks
(RWs) with different jump distributions. The Gaussian, uni-
form, double-exponential, and Pareto (with index μ ¼ 3) jump
distributions, all of which have a finite variance, collapse onto
the Brownian scaling function fBMðyÞ shown by the solid
(green) line. For Lévy flights with index μ ¼ 3=2 and μ ¼ 1
(Cauchy distribution), the scaling function fμðyÞ depends on μ
(except at the endpoints y ¼ �1, where fμð�1Þ ¼ 1=2 seems to
be universal for all 0 < μ ≤ 2).
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compute the PDF PðτjTÞ and find that it has the scaling
form given in Eq. (2) [39].
Discrete-time random walks and Lévy flights.—It is

natural to ask whether the PDF PðτjTÞ of the continuous-
time BM derived above holds for the discrete-time random
walks or Lévy flights defined in Eq. (6). For such a
discrete-time walk, let nmax (nmin) denote the time at which
the maximum (minimum) is reached. Remarkably, Sparre
Andersen showed that the marginal distribution PðnmaxjnÞ
[equivalently PðnminjnÞ] is completely universal for all n,
i.e., is the same for any symmetric jump PDF pðηÞ [17];
thus, it is identical for random walks with both a finite jump
variance and Lévy flights. In particular, for large n,
PðnmaxjnÞ converges to the arcsine law in Eq. (1), with
T replaced by n and tmax replaced by nmax. Does this
universality also hold for the PDF of the time difference
τ ¼ nmin − nmax? To investigate this question, we computed
PðτjnÞ exactly for the special case of a double exponential
jump PDF pðηÞ ¼ ð1=2Þe−jηj. The details are left in the SM
[39]; here, we just outline the main results. We find that, for
large n, PðτjnÞ converges to the scaling form PðτjnÞ≈
ð1=nÞfexpðτ=nÞ, where fexpðyÞ satisfies the integral
equation

Z
1

0

dy
fexpðyÞ
1þuy

¼
Z

∞

0

dz
2e−z

1−e−2z
tanh2

�
z

2
ffiffiffiffiffiffiffiffiffiffi
1þu

p
�
: ð8Þ

Remarkably, this integral equation can be solved; and we
show fexpðyÞ ¼ fBMðyÞ obtained for the continuous-time
BM in Eq. (2). This representation of fBMðyÞ in Eq. (8)
turns out to be useful to compute the moments of τ
explicitly (see [39]). We would indeed expect this
Brownian scaling form to hold for any jump densities with
a finite variance σ2 due to the central limit theorem. We
have numerically verified this universality for other jump
distributions pðηÞ with a finite variance (see Fig. 3).
However, for heavy tailed distributions, such as for Lévy
flights with an index 0 < μ < 2, we numerically find that
while, for large n, PðτjnÞ ≈ ð1=nÞfμðτ=nÞ, the scaling
function fμðyÞ depends on μ (see Fig. 3), except at
endpoints y ¼ �1, where it seems that fμð�1Þ ¼ 1=2
independently of 0 < μ ≤ 2. The result for Pðτ ¼ nmin −
nmaxjnÞ is thus less universal as compared to the marginal
distributions of nmax and nmin given by the arcsine
laws [Eq. (1)].
Brownian bridge.—We now turn to the statistics of tmax

and tmin for a BB where the initial position of xð0Þ ¼ 0 and
the final position of xðTÞ ¼ 0 are identical. The motivation
for studying the BB comes from the fact that this will be
directly applicable to study KPZ or EW interfaces with
periodic boundary conditions in space (see below). For the
BB, it is well known [16] that PðtmaxjTÞ ¼ 1=T, i.e.,
uniform over tmax ∈ ½0; T�. The same result holds for tmin
as well. However, we find that the PDF of their difference

of τ ¼ tmin − tmax takes the scaling form PðτjTÞ ¼
ð1=TÞfBBðτ=TÞ for all T, where the scaling function
fBBðyÞ is nontrivial as in Eq. (4). To derive this result,
we follow the same path decomposition method as in the
case of the BM, except in the third segment t ∈ ½tmin; T�,
where we need to impose that the final position of the
trajectory is xðTÞ ¼ 0. Thus, while in time segments (I) and
(II) the probabilities are exactly the same for the BM and
the BB, in segment (III) we have simplyGMðxmin; Tjϵ; tminÞ
for the BB (after the shift of the origin to −xmin). Taking the
product of the three segments, and following the same
calculations as in the BM case (see [39]), we obtain the
result for fBBðyÞ in Eq. (4). As shown in the SM [39], this
result can also be alternatively derived by exploiting a
mapping, known as Vervaat’s construction [48], between
the BB and the Brownian excursion (the latter being just a
BB constrained to stay positive on [0, T]). We have also
verified these calculations by simulating a BB using an
algorithm proposed in Ref. [49], finding excellent agree-
ment (see Fig. 2).
Fluctuating interfaces.—Our results can be applied

directly to (1þ 1)-dimensional KPZ or EW interfaces.
Consider a one-dimensional interface growing on a finite
substrate of length L, with Hðx; tÞ denoting the height of
the interface at position x and time t, with 0 ≤ x ≤ L
[50–52]. We study both free and periodic boundary con-
ditions (FBC and PBC, respectively). In the former case,
the heights at the endpoints of x ¼ 0 and x ¼ L are free,
whereas in the latter case, Hð0; tÞ ¼ HðL; tÞ. The height
field evolves by the KPZ equation [53]

∂Hðx; tÞ
∂t ¼ ∂2Hðx; tÞ

∂x2 þ λ

�∂Hðx; tÞ
∂x

�
2

þ ηðx; tÞ; ð9Þ

where λ ≥ 0, and ηðx; tÞ is a Gaussian white noise with zero
mean and correlator hηðx; tÞηðx0; t0Þi ¼ 2δðx − x0Þδðt − t0Þ.
The zero mode, i.e., the spatially averaged height

HðtÞ ¼ ð1=LÞ
Z

L

0

Hðx; tÞdx;

typically grows with time. Hence, the PDF of Hðx; tÞ does
not reach a stationary state, even for a finite system.
However, the distribution of the relative heights hðx; tÞ ¼
Hðx; tÞ −HðtÞ does reach a stationary state at long times
for finite L. For the simpler case of the EW [54] interface
[λ ¼ 0 in Eq. (9)], the joint PDF of the stationary relative
height hðxÞ in the case of the FBC is given by [55–57]

PstðfhgÞ ¼ BLe
−1=2

R
L

0
dxð∂xhÞ2δ

�Z
L

0

hðxÞdx
�
: ð10Þ

Here, BL is a normalization constant, and the delta function
enforces the zero area constraint
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Z
L

0

hðxÞdx ¼ 0;

which follows from the definition of the relative height.
Incidentally, this result for the FBC holds also for the KPZ
equation with λ > 0, but only in the large L limit. Thus,
locally, the stationary height field hðxÞ for λ ≥ 0 is a BM in
space, with x playing the role of time. For the PBC, an
additional factor of δ½hð0Þ − hðLÞ� is present in Eq. (10)
(see Refs. [55–57]); moreover, it holds for any finite L and
arbitrary λ ≥ 0 [39]. The PDF of the maximal relative
height hmax ¼ max0≤x≤LhðxÞ was computed exactly for
both boundary conditions [55,56]. These distributions are
nontrivial due to the presence of the global constraint of
zero area under the BM or BB. Under the correspondences
x ⇔ t, L ⇔ T, and hðxÞ ⇔ xðtÞ, the stationary interface
maps onto a BM (for FBC) and to a BB (for PBC) of
duration T, but with an important difference: the corre-
sponding BM and BB have a zero-area constraint.
Although this constraint affects the PDF of the maximal
(minimal) height, it is clear that the position at which the
maximal (respectively, minimal) height occurs is not
affected due to this global shift by the zero mode.
Hence, the distributions of the positions of maximal and
minimal heights for the stationary KPZ or EW interface are
identical to that of tmax and tmin for the BM (for FBC) and
the BB (for PBC). Hence, the PDF of τ ¼ tmin − tmax given
in Eqs. (2) and (4) also gives the PDF of the position
difference between the minimal and maximal heights in the
stationary KPZ/EW interface. We have verified this ana-
lytical prediction for the KPZ or EW interfaces by solving
Eq. (9) numerically, finding excellent agreement (see
figures 4 and 5 in [39]).
We have presented an exactly solvable example for the

distribution of the time difference between the occurrences
of the maximum and the minimum of a stochastic process
of a given duration T. Our results show that, even for BM or
BB, this distribution is highly nontrivial. We have also
shown how the same distribution shows up for KPZ or EW
interfaces in 1þ 1 dimensions in their stationary state.
Computing this non-trivial distribution for other stochastic
processes, such as Lévy flights, remains a challenging open
problem.
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