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Driven periodic elastic systems such as charge-density waves (CDWs) pinned by impurities show a
nontrivial, glassy dynamical critical behavior. Their proper theoretical description requires the functional
renormalization group. We show that their critical behavior close to the depinning transition is related to a
much simpler model, OðnÞ symmetric ϕ4 theory in the unusual limit of n → −2. We demonstrate that both
theories yield identical results to four-loop order and give both a perturbative and a nonperturbative proof of
their equivalence. As we show, both theories can be used to describe loop-erased random walks (LERWs),
the trace of a random walk where loops are erased as soon as they are formed. Remarkably, two famous
models of non-self-intersecting random walks, self-avoiding walks and LERWs, can both be mapped onto
ϕ4 theory, taken with formally n ¼ 0 and n → −2 components. This mapping allows us to compute the
dynamic critical exponent of CDWs at the depinning transition and the fractal dimension of LERWs in
d ¼ 3 with unprecedented accuracy, zðd ¼ 3Þ ¼ 1.6243� 0.001, in excellent agreement with the estimate
z ¼ 1.62400� 0.00005 of numerical simulations.
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The model of periodic elastic manifolds driven by an
external force through a disordered medium is relevant for
charge-density waves (CDWs) in disordered solids [1–3],
flux-line lattices in the mixed state of disordered type-II
superconductors (Bragg glass) [4–7], and disordered Wigner
crystals [8–10]. It has long been known that even weak
disorder destroys the long-range translational order and pins
the elastic manifold [11]. Once the external driving force f
exceeds a critical threshold forcefc, themanifold undergoes a
depinning transition to a sliding state. The dynamics of the
system in the vicinity of this transition was studied both
numerically [12–16] and via field theory [17–21]. The latter
requires the functional renormalization group (FRG).
As scaling arguments imply that the critical behavior of a
disordered elastic manifold with short-range elasticity is
dominated by disorder for d < duc ¼ 4, any perturbative
description breaks down on scales larger than the Larkin scale
[22]. As a consequence, one has to follow the renormalization
of the whole disorder correlator, which develops a cusp at the
Larkin scale. The appearance of this nonanalyticity in the
running disorder correlator accounts for metastability and a
finite threshold force. As the corresponding FRGcalculations
are very involved, they have only recently been extended to
two- [23–25] and three-loop order [26,27].
In the present Letter, we show that when the field is

periodic, most properties are described by a much simpler
field theory, namely, the OðnÞ symmetric ϕ4 model with

n → −2. This fact, overlooked for decades, drastically
simplifies calculations of the depinning transition, since
ϕ4 theory is well known and its renormalization-group
description does not require the FRG. We also prove that
both models describe loop-erased random walks (LERWs)
in arbitrary dimension d. In this Letter, we outline the main
ideas and results, while details of the proof and calculations
are published elsewhere [28].
Random walks (RWs) without self-intersections play an

important role in mathematics, statistical physics, and
quantum field theory. The two widely encountered models
are self-avoiding walks (SAWs) and LERWs. The SAW
describes long polymer chains with self-repulsion caused
by excluded-volume effects. It can be defined as the
uniform measure on all possible paths of a given length
without self-intersections. While the SAW is difficult to
analyze mathematically rigorously, it was discovered by de
Gennes [29] that its large-scale behavior can be extracted
from the OðnÞ symmetric ϕ4 model in the unusual limit of
n → 0. The LERW, which is intimately related to uniform
spanning trees [30,31], is a special case of the Laplacian
RW [32,33]. It is built from a RW by erasing any loop as
soon as it is formed [34]. A realization of a two-dimen-
sional LERW is shown in Fig. 1. Both models have a
scaling limit in all dimensions, for instance, the end-to-end
distance R scales with the RW length l as R ∼ l1=z, where z
is the fractal dimension [35].
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Contrary to the SAW, the LERW has no obvious field
theory. Three-dimensional LERWs have been studied only
numerically [36–39]. In two dimensions, LERWs can be
described by the radial Schramm-Loewner evolution with
parameter κ ¼ 2, also known as SLE2 [40,41]. It predicts
a fractal dimension zLERWðd ¼ 2Þ ¼ 5=4, which is
clearly different from that of SAWs zSAWðd ¼ 2Þ ¼ 4=3.
Coulomb-gas techniques link this to the 2D OðnÞ model at
n → −2, which is a conformal field theory with central
charge c ¼ −2 [42,43]. We show below that the equiv-
alence between LERWs and OðnÞ symmetric ϕ4 theory at
n → −2 holds in any dimension d.
In [44] it was conjectured that the field theory of the

depinning transition of CDWs pinned by disorder is a field
theory for LERWs. This statement was based on the
conjecture of Narayan and Middleton [45] that pinned
CDWs can be mapped onto the Abelian sandpile model.
The connection of the latter with uniform spanning trees,
and thus with LERWs, is well established [31]. The two-
loop predictions of [44] agree with rigorous mathematical
bounds, and have been tested against numerical simulations
at the upper critical dimension duc ¼ 4 [38], where it was
found that they correctly reproduce the leading and sub-
leading logarithmic corrections.
If this conjecture holds, then the ϕ4 theory at n → −2 has

to reproduce the FRG picture for CDWs, at least for
observables related to LERWs. Below we prove that the
β function and the critical exponents z, ν ¼ 1=2, and η ¼ 0
coincide for these theories. This is done by using a
perturbative analysis of diagrams, nonperturbative super-
symmetry techniques, and an explicit four-loop calculation
for both models. However, this does not mean that the
theories are identical, since one theory can have observ-
ables absent in the other. For instance, at depinning, CDWs
exhibit avalanches [45–47], which are seemingly absent in
the ϕ4 theory. We claim that in the sector in which we can
compare the two theories, they agree (see inset of Fig. 1).

Before we demonstrate the relation between CDWs and
the n-component ϕ4 theory at n → −2, we outline how the
latter can be used to study LERWs in arbitrary dimension d.
First of all, it is convenient to rewrite the ϕ4 theory in terms
of N ¼ n=2 complex bosons Φ, with action

S½Φ⃗� ≔
Z
x
∇Φ⃗�ðxÞ∇Φ⃗ðxÞ þm2Φ⃗�ðxÞΦ⃗ðxÞ

þ g
2
½Φ⃗�ðxÞΦ⃗ðxÞ�2: ð1Þ

It is known perturbatively that for N ¼ −1 the full two-
point correlation function hΦ�

i ðxÞΦjðx0Þi reduces to the
free-theory value independent of g [48–51]. It can be
proven nonperturbatively by mapping onto complex fer-
mions. Indeed, in Feynman diagrams for a bosonic Φ4

theory, each loop carries a factor of N. In a fermionic Φ4

theory with M fermions, a closed fermion loop carries a
factor of −M, so that a theory with N bosons is equivalent
to a theory with N þM bosons and M fermions, where N
and M can be continued to arbitrary real numbers. In
particular, N ¼ −1 corresponds to M ¼ 1, where the term
quartic in fermionic fields vanishes, proving nonrenorm-
alization of the propagator.
We now sketch the equivalence, referring to the

Supplemental Material [52] for details and an alternative
proof based on Ref. [54]. In Fourier space, the two-point
correlator hΦ�

i ðkÞΦjð−kÞi can be viewed as the Laplace
transform of the k-dependent Green’s function for a RW. It
is convenient to draw the trajectory of the RW in blue and,
when it hits itself, color the emerging loop in red instead of
erasing it. Going to the lattice and studying configurations
with exactly one self-crossing, the contributions from
perturbation theory are

ð2Þ

The first line is a graphical representation of the RW used
to construct a SAW or LERW. It starts at x and ends
in x0, passing through the segments numbered 1–3. By
assumption, it crosses once at point y, but nowhere else.
The second line contains all one-loop diagrams of Φ4

theory. de Gennes [29] showed that setting N → 0 yields
the perturbative expansion of SAWs, a fact that can also be
proven algebraically [48]. In our formulation, the idea of
the proof is as follows: As we consider configurations with
exactly one self-intersection, and since we are working
on a lattice, the choice g ¼ 1 cancels the first two terms,
while the last one is absent at N ¼ 0. Thus, there is no

FIG. 1. Trace of a LERW in blue, with the erased loops in red,
on a 2D honeycomb lattice. (Inset) Nesting of the different field
theories for LERWs.
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configuration with a self-intersection for SAWs. Now
consider g ¼ 1 and N → −1, for which the first two and
last two terms cancel. This implies that the free propagator
can be rewritten as the last diagram, which has the
advantage to distinguish between red and blue parts of
the trace, as long as the limit of N → −1 is not yet taken.
The final step is to pass to the field theory. The latter has a β
function with an attractive fixed point g� governing the
large-distance behavior, implying that the choice g ¼ 1
taken above can be relaxed to an arbitrary g > 0.
What we need now is an operator that measures the

length of the blue backbone in (2). This is achieved by the
crossover operator [55–57],

OðyÞ ≔ Φ�
1ðyÞΦ1ðyÞ −Φ�

2ðyÞΦ2ðyÞ: ð3Þ

It checks whether point y is part of the blue trace, as it
vanishes in a red loop. The fractal dimension z of a LERW
is extracted from the length of the blue part via

�Z
y
OðyÞ

�
∼m−z: ð4Þ

We now turn back to CDWs, which in the presence of
disorder can be described by the Hamiltonian [5,23]

H ¼
Z
x

�
1

2
½∇uðxÞ�2 þm2

2
(uðxÞ − w)2 þ V(x; uðxÞ)

�
;

ð5Þ

where Fðx; uÞ ¼ −∂uVðx; uÞ is a random Gaussian force
with zero mean and variance Fðx; uÞFðx0; u0Þ ¼
Δðu − u0Þδdðx − x0Þ. The function ΔðuÞ is even with period
1. The overdamped dynamics of CDWs is given by the
equation of motion ∂tuðx; tÞ ¼ −δH½u�=δuðx; tÞ [19].
Considering the system driven by increasing w [58], which
means that the driving force f fluctuates around its self-
organized critical value fc, we arrive at the dynamic field
theory [24,25]

SCDW ¼
Z
x;t
ũðx; tÞð∂t −∇2 þm2Þ½uðx; tÞ − w�

−
1

2

Z
x;t;t0

ũðx; tÞũðx; t0ÞΔ(uðx; tÞ − uðx; t0Þ): ð6Þ

The statistical tilt symmetry implies nonrenormalization of
the gradient and mass terms, equivalent to exponents
ν ¼ 1=2 and η ¼ 0 in the ϕ4 model at n → −2.
One checks that in the theory (6) all Taylor coefficients in

the expansion of ΔðuÞ at u ¼ 0 are relevant coupling
constants for d < 4 so that one has to follow renormaliza-
tion of the whole function. This can be achieved by using
the FRG [17–21,23–25]. The flow equation to one-loop
order is

−m∂mΔðuÞ ¼ εΔðuÞ − 1

2

d2

du2
½ΔðuÞ − Δð0Þ�2; ð7Þ

where ε ¼ 4 − d. The analysis of the FRG flow shows that
the fixed point (FP) with period 1 has the form ΔðuÞ ¼
Δð0Þ − ðg=2Þuð1 − uÞ for u ∈ ½0; 1� with a cusp at the
origin. In the absence of higher-order terms in u, the
renormalization group flow closes in the space of poly-
nomials of degree 2, and for the quadratic term one is left
with the renormalization of a single coupling constant g.
This form of the FP has been confirmed explicitly to three-
loop order and presumably holds to all orders [26,27].
In order to connect to theΦ4 theory introduced above, let

us use supersymmetry to average over disorder [59–61].
The validity of this method at depinning is justified by the
fact that the periodic FPs describing depinning and equi-
librium have the same value of g and differ only byΔð0Þ. At
equilibrium, the FP is potential, i.e.,

R
∞
−∞ duΔðuÞ ¼ 0, and

thus g also determines Δð0Þ. At depinning, g is not enough
to get the whole two-point function, and some information
is absent. The disorder average of any observable O½ui� is
[59–61]

O½ui�

¼
Z Y2

a¼1

D½ũa�D½ua�D½ψ̄a�D½ψa�O½ui�

×exp

�
−
Z
x
ũaðxÞ

δH½ua�
δuaðxÞ

þ ψ̄aðxÞ
δ2H½ua�

δuaðxÞδuaðyÞ
ψaðyÞ

�
:

ð8Þ

Here the integral over the auxiliary bosonic fields ũa
implies that ua is at a minimum of H, while the integrals
over fermionic fields ψ̄a and ψa cancel the functional
determinant appearing in the integration over ua.
It is known that direct application of this method with

one copy fails beyond the Larkin length, leading to the so-
called dimensional reduction [59,60]. The key point is that
we introduced two copies a ¼ 1, 2 of the system in (8) to
get access to the second cumulant of the disorder distri-
bution that we want to renormalize. As was shown in
Ref. [61], one recovers the FRG flow equation (7) of the
statics, which in turn leads to the appearance of a cusp in
the running disorder correlator at the Larkin scale, thus
avoiding dimensional reduction. It can also be viewed as a
breaking of supersymmetry.
Introducing center-of-mass coordinates

u1;2ðxÞ ¼ uðxÞ � 1

2
ϕðxÞ; ũ1;2ðxÞ ¼

1

2
ũðxÞ � ϕ̃ðxÞ; ð9Þ

the effective action becomes, after some cumbersome but
straightforward calculation shown in the Supplemental
Material [52],
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S ¼
Z
x
ϕ̃ðxÞð−∇2 þm2ÞϕðxÞ þ ũðxÞð−∇2 þm2ÞuðxÞ

þ
X2
a¼1

ψ̄aðxÞð−∇2 þm2ÞψaðxÞ

þ g
2
ũðxÞϕðxÞ

�
ψ̄2ðxÞψ2ðxÞ− ψ̄1ðxÞψ1ðxÞ−

1

4
ũðxÞϕðxÞ

�

þ g
2
½ϕ̃ðxÞϕðxÞ þ ψ̄1ðxÞψ1ðxÞ þ ψ̄2ðxÞψ2ðxÞ�2: ð10Þ

It is easy to check that, while uðxÞ and ũðxÞ have nontrivial
expectations, the terms depending on them (the second
term in the first line, and the third line) do not contribute to
the renormalization of g and thus can be dropped. What
remains in action (10) is aΦ4-type theory with one (N ¼ 1)
complex boson and two (M ¼ 2) complex fermions. As we
showed above, this can equivalently be viewed as complex
ϕ4 theory withN → −1, or real ϕ4 theory with n → −2. We
thus proved that both models have the same effective
coupling g, and thus the same β function for g. This allows
us to reconstruct ΔðuÞ in the statics and up to the constant
Δð0Þ also at depinning.
We show now that this relation between the two models

allows one to determine the dynamic exponent z at
depinning. The dynamic theory has an additional renorm-
alization of friction or time, which shows up in corrections
to the term

R
x;t ũðx; tÞ _uðx; tÞ in action (6). Using this action

to construct all diagrams in which one field ũ and one field
u remain, the latter has the form uðx; tÞ − uðx; t0Þ and can
be expanded as _uðx; tÞðt − t0Þ. The time difference, when
appearing in the expression for a diagram, together with
a response function given in Fourier by Rðk; tÞ ¼
ΘðtÞe−tðk2þm2Þ, can be treated as an insertion of an addi-
tional point into the line, for the latter using the relation

tRðk; tÞ ¼
Z

t

0

dt0Rðk; t0ÞRðk; t − t0Þ: ð11Þ

One can check perturbatively that the diagrams renormal-
izing the term ũðx; tÞ∂tuðx; tÞ in the CDWaction (6) reduce
to the two-point function of model (1) with an insertion of
the crossover operator (3). This identifies the dynamic
exponent of CDWs at depinning with the crossover
exponent of the Φ4 theory. Let us demonstrate this on
the example of the one-loop dynamic diagram

ð12Þ

The wavy line is the crossover operator defined in Eq. (3).
Using a short-time expansion, the lhs of Eq. (12) is
evaluated to [24]

Z
x;t;t0

ũðx; tÞ½Δ0ð0þÞ þ Δ00ð0Þðt − t0Þ _uðx; tÞ�R0;t−t0 ; ð13Þ

where Rx;t is the response function in real space. The first
term ∼Δ0ð0þÞ renormalizes the critical force, while the
second one corrects the friction. Using relation (11) and
integrating over times, the resulting expression is the one-
loop diagram of Φ4 theory for the observable (3), i.e., the
rhs of Eq. (12). Following this strategy, we checked that this
property persists up to four-loop order. This can be proven
graphically to all orders [28].
We generated all diagrams contributing to OðyÞ at five-

loop order, and to the renormalization of the coupling
constant at four-loop order, using the diagrams computed in
a massless minimal subtraction scheme in [50,51]. This
yields for the dynamical exponent z of CDWs at depinning
in dimension d ¼ 4 − ε, equivalent to the fractal dimension
df of LERWs in the same dimension,

z ¼ 2 −
ε

3
−
ε2

9
þ
�
2ζð3Þ
9

−
1

18

�
ε3

−
�
70ζð5Þ
81

−
ζð4Þ
6

−
17ζð3Þ
162

þ 7

324

�
ε4

þ
�
121ζð3Þ
972

−
8ζð3Þ2
81

þ 17ζð4Þ
216

−
103ζð5Þ
243

−
175ζð6Þ
162

þ 833ζð7Þ
216

−
17

1944

�
ε5 þOðε6Þ; ð14Þ

where ζðsÞ is the Riemann zeta function. This result agrees
with the dynamic critical exponent of CDWs at depinning
computed using the FRG to two- [24] and four-loop order
[28], the four-loop result for the crossover exponent of the
OðnÞ symmetric ϕ4 theory computed in Ref. [56], setting
n → −2 and its extension to six-loop order [62]. Using
Borel resummation of the latter yields z ¼ 1.244� 0.01
in d ¼ 2, where the exact value is z ¼ 5=4 [40,41], and
zðd ¼ 3Þ ¼ 1.6243� 0.001. This can be compared to the
most precise numerical simulations to date by Wilson [39],
zðd ¼ 3Þ ¼ 1.62400� 0.00005.
To summarize, we showed that CDWs at depinning are

equivalent to the OðnÞ symmetric ϕ4 theory with n → −2,
and that both field theories describe LERWs. We gave both
a perturbative proof of this equivalence and a proof based
on supersymmetry. This was checked by an explicit four-
loop calculation. Using the OðnÞ symmetric ϕ4 theory, we
calculated the dynamic critical exponent for CDWs at
depinning and the fractal dimension of LERWs to fifth
order in ε ¼ 4 − d, in excellent agreement with known
numerical results. Our findings are surprising, since a
simple ϕ4 theory allows one to obtain the FRG fixed point
of CDWs, which is a glassy disordered system. However, it
does not provide all information about pinned CDWs,
for instance, the two-point dynamic correlation function.
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Our understanding is that both field theories are not
isomorphic, but when restricted to the same physical sector
make the same predictions. This opens a path to eventually
tackle other systems, which currently necessitate the FRG,
such as random-field magnets [63–65], using a simpler
effective field theory.
Our results provide a strong support for the Narayan-

Middleton conjecture [45] that CDWs pinned by disorder
can be mapped onto the Abelian sandpile model and on
LERWs [44]. As a consequence, the dynamic critical
exponent of a 2D CDWat depinning is exactly zðd ¼ 2Þ ¼
5=4. Remarkably, while CDWs at depinning map onto
Abelian sandpiles, disordered elastic interfaces at depin-
ning map onto Manna sandpiles [66,67]. Thus, each main
universality class at depinning corresponds to a specific
sandpile model.
Finally, the mapping of ϕ4 theory at n → −2 onto

LERWs provides not only the fractal dimension of the
latter, but also the correction-to-scaling exponent ω. We
propose to measure it in simulations by erasing loops with
probability p < 1. Its ε expansion at six-loop order [51] is
only slowly converging, and we estimate ω ¼ 0.83� 0.01.
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