
 

Spontaneous Magnetic Superdomain Wall Fluctuations in an Artificial Antiferromagnet
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Collective dynamics often play an important role in determining the stability of ground states for both
naturally occurring materials and metamaterials. We studied the temperature dependent dynamics of
antiferromagnetically ordered superdomains in a square artificial spin lattice using soft x-ray photon
correlation spectroscopy. We observed an exponential slowing down of superdomain wall motion below
the antiferromagnetic onset temperature, similar to the behavior of typical bulk antiferromagnets. Using a
continuous time random walk model we show that these superdomain walls undergo low-temperature
ballistic and high-temperature diffusive motions.
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Naturally occurring systems with dipole magnetic inter-
actions exhibit exotic emergent phases, such as quantum
spin liquids [1,2], and novel magnetic excitations [3].
Fluctuations about equilibrium in such systems are inevi-
table and remain incompletely understood. Moreover, low
phase transition temperatures and lack of control in
engineering the energy landscapes of atomic systems pose
significant challenges to understanding the fundamental
physics underlying spin ice behavior. Artificially fabricated
latticesmitigate these problems and have attracted increasing
attention as appropriate model systems for elucidation of
frustration, phase transitions, and associated dynamics [4–7].
Artificially fabricated lattices commonly consist of dipole-

coupled, elongated, nanoscale segments of ferromagnetic
thin films (“block spins”) placed on a two-dimensional
periodic lattice. The shape anisotropy of the block spins
constrains their magnetization to lie along their long axis,
which creates a classical analog of Ising spins. We refer
to such systems as “artificial spin lattices” (ASL), which
include the intensively studied artificial spin ices [8]. In
particular, a 2D square ASL exhibits an antiferromagnetic
ground state [5,9–14], whose simple structure serves as an
ideal model system for studies of equilibrium dynamics in
dipolar-coupled systems.
Previous investigations of thermally active, square ASLs

indicate that a magnetic phase transition from an ordered
antiferromagnetic (AFM) ground state to a disordered para-
magnetic (PM) state takes place at a temperature TN .
Large AFM domains form well below TN [11,13]. Such

mesoscopic domains are referred to as “superdomains” to
distinguish them frommicroscopic domains in the magnetic
thin film [15]. When the temperature approaches TN , the
system forms contiguous regions of rapidly fluctuating
block spins coexisting with AFM superdomains [See
Ref. [13] and Fig. S5(a) in the Supplemental Material [16] ].
Static AFM superdomains in square ASL have been

imaged using magnetic force microscopy (MFM) [5,22]. In
one case, frozen thermal excitations above the AFM ground
state were observed within these superdomains [5]. Lorentz
transmission electron microscopy has also been used to
image similar static superdomains in square ASL with
topological defects [23]. On the other hand, dynamics in the
square ASL have been imaged with photoemission electron
microscopy (PEEM) to study fluctuations of individual
block spins [13] and relaxation from ferromagnetic states
[12]. However, these studies did not capture the collective
fluctuations of block spins at superdomain boundaries.
Moreover, these studies were limited to the PEEM time
resolution of a few seconds [12,13,24,25].
Here we report the direct observation of spontaneous

AFM superdomain wall nucleation, annihilation, and fluc-
tuations in a 2D square ASL. We have used resonant
coherent x-ray diffraction over awide range of temperatures
near the AFM-to-PM phase transition. Coherent x rays can
directly probe order parameters and collective dynamics.
The diffraction pattern of coherent x rays from magnetic
domains includes a complex interference (speckle) pattern
that is unique to the real-space superdomain textures.
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By tracking time-dependent speckle motion, we studied
superdomain dynamics in square ASL with 100-ms time
resolution. We applied a random-walk model that revealed
two distinct regimes of superdomain wall motion as the
sample goes through the AFM phase transition: a low-
temperature ballistic and a high-temperature diffusive
types. These studies show that characterizing superdomain
wall behavior is critical to understanding the dynamics of
the square ASL. Such an understanding may prove crucial
for implementing computing and data storage strategies
based upon artificial spin systems [26–29].
A square permalloy (Ni0.8Fe0.2) ASL was fabricated on a

silicon nitride membrane using electron-beam lithography
[Fig. 1(a)]. The block-spin dimensions were 470 nm long,
170 nm wide, and 3 nm thick with a lattice constant
a ¼ 600 nm. Figure 1(a) also illustrates the AFM ground
state configuration of the ASL. Coherent x-ray diffraction
measurements were performed at beam line 12.0.2 at the
Advanced Light Source and beam line 23-ID-1 at the

National Synchrotron Light Source II. The sample was
positioned at a glancing angle of θ ¼ 10° with respect to the
σ-polarized beam propagation direction to enhance the in-
plane x-ray magnetic cross section with the [0, 1] axis in the
scattering plane. The detector was centered on the specu-
larly (zero order) reflected beam. The sample’s elongated
shape (∼8 μm × 50 μm), tailored for the 10° glancing
angle, maximizes the scattering volume while satisfying
the Nyquist sampling condition. Essentially perfect trans-
verse coherence and a longitudinal coherence length of
∼2 μm are realized at the sample. The incident x-ray beam
always overfills the sample area to minimize artifacts from
beam drift or from shifts in the sample position due to
temperature changes. Diffracted photons were collected
using a fast CCD detector (with a readout rate of 10 Hz
and 30 μm × 30 μm pixel size) placed 340 mm from the
sample [30].
Figure 1(b) shows a typical diffraction pattern from a

square ASL in its AFM ground state. Rows of intense
structural Bragg peaks and weaker AFM Bragg peaks are
visible at integer q ¼ ðH;KÞ and half-integer ðH=2; K=2Þ
wave vectors, respectively, surrounding the central (0,0)
specular reflection. The AFM Bragg peaks could only be
detected by using resonant enhancement from the magnetic
Fe (Ni) edge at 707 (853) eV [16]. These peaks provide a
direct measure of the strength and character of the AFM
order. Figure 1(c) shows cuts through time-averaged AFM
Bragg peaks at various temperatures spanning the magnetic
transition. The inset plots the temperature dependence of
the integrated AFM Bragg peak intensity that corresponds
to the area fraction of AFM domains. The width of the
AFM Bragg peak measures the AFM correlation length;
thus, we observe the AFM superdomains shrink as temper-
ature approaches the magnetic transition at TN ∼ 425 K.
Past theoretical studies [17,31] on square ASL predict a
continuous phase transition; here, our observed transition is
apparently broadened by a finite size effect [16,32].
The AFM Bragg peaks show speckle patterns that arise

from coherent interference between different AFM super-
domains [Fig. 2(a)]. This pattern reflects the square of the
Fourier transform of the AFM texture, and offers unique
insights into the spatial character and dynamics of the AFM
state. The size and shape of speckles depend on the x-ray
energy, sample illuminated area, and the scattering geom-
etry [33]. However, the number of speckles and spatial
distribution of intensities are an indication of the number of
AFM superdomains and their dynamics [34]. After initially
heating above TN and then cooling until T ≪ TN , only a
single speckle was observed in the AFM peaks, consistent
with the presence of only a single AFM superdomain across
the entire sample [35]. As we increase the temperature,
thermal excitations nucleate superdomain walls that split
a single speckle to multiple speckles. We note that single
block-spin flips or multiple block-spin excitations [5]
cannot create these speckle patterns that necessarily

FIG. 1. (a) SEM image of a square ASL sample with a
schematic of the block-spin lattice and AFM-ordered block
spins. (b) ASL diffraction pattern (T ¼ 335 K) in reciprocal
lattice coordinates ðH;KÞ ¼ (Qx=ð2π=aÞ; Qy=ð2π=bÞ), where
a ¼ b ¼ lattice constant (600 nm). Detector intensity is plotted
on a log scale in arbitrary units (note color scale). A half-integer
AFM Bragg peak is clearly visible at the center of the box
bounded by black dotted lines. (c) Temperature dependence of
detector intensity along a cut through time-averaged AFM Bragg
peak. Inset shows the integrated intensity and peak width
obtained from a Lorentzian fit.
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require multiple AFM superdomains with distinct,
extended boundaries.
To visualize the time evolution of speckle positions, we

show “waterfall plots” in Fig. 2(b), which consist of
speckle intensity measured along a vertical cut through
the AFM peak as a function of time with a resolution of
0.1 s. The fluctuation rate and number of speckles increases
as the phase transition temperature is approached from
below. This is a direct indication of the sample transitioning
from a stable, single superdomain state to a highly fluctuat-
ing, multidomain state. Spontaneous nucleation and annihi-
lation of superdomain walls is apparent in the data shown in
Fig. 2(b). For example, at 345 K the system is initially in a
single superdomain state that generates a single speckle.
Around t ¼ 15 s, the speckle splits into two, indicating a
creation of a superdomain wall. Subsequently, at t ¼ 16 s,
the system evolves back to a single superdomain. This
collective behavior was not considered in prior PEEM
studies that focused on single block-spin fluctuations [13]
and XPCS studies that focused on weakly interacting block
spins [36]. Such spontaneous behavior clearly arises from an
equilibrium fluctuation instead of the magnetic relaxation
processes previously observed by PEEM [12].
The speckle time dependence is quantified using the one-

time correlation function, g2ðq; τÞ, given by

g2ðq; τÞ ¼
hIðq; tÞIðq; tþ τÞi

hIðq; tÞi2 ¼ 1þ βjFðq; τÞj2; ð1Þ

where Iðq; tÞ is the total intensity of a speckle image at
wave vector q and at time t. The brackets hi indicate the
time and ensemble average over all speckles with equiv-
alent q values. We can further write g2ðq; τÞ in terms of the
intermediate scattering function jFðq; τÞj2 of the sample,
and speckle contrast β that depends only on the exper-
imental setup [37,38]. We calculate jFðτÞj2 using detector

areas corresponding to a single speckle. Figure 3(a)
shows that the decay time clearly decreases with increasing
temperature. Above 385 K, jFðτÞj2 flattens [16] as the
fluctuations become faster than the CCD acquisition rate.
We did not observe a clear q dependence of the speckle
correlation up to 375K, as the speckle intensity drops sharply
with increasingq. In principle, jFðτÞj2 drops from1 to 0 upon
complete decorrelation of a speckle pattern. In our case,
jFðτÞj2 drops to a temperature-dependent, finite offset that
depends on the static fraction of AFM superdomains.
The dramatic temperature dependence in the curvature

of jFðτÞj2 indicates a change in the nature of superdomain

FIG. 2. (a) Speckles observed for a single AFM Bragg peak at three different temperatures. At 335 K we observe a single AFM
superdomain, and growth of speckle number with increasing temperature. (b) Waterfall plots showing the time evolution of speckle
positions for various temperatures. Each horizontal line represents a cut through an AFM peak capturing the intensity vs pixel position at
some time t. One pixel is approximately 0.005 in K. Intensities are normalized to the maximum intensity for each temperature as given in
Fig. 1(c). Spontaneous domain wall fluctuations are observed at all temperatures, but decrease in number with reduced temperature.

(a)

(b) (c)

FIG. 3. (a) Intermediate scattering function jFj2 calculated for
speckle patterns at different temperatures. Solid lines are random
walk fits to the initial decay. Temperature dependence of (b) time
cost, τDW, and (c) exponent α in the model. [Inset in (b)] Random
walk model schematic.
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dynamics. To understand this behavior, we developed a
model that maps magnetic superdomains onto particles
positioned at the center of mass of the superdomain
boundaries [16]. In this approach, we are not sensitive to
fluctuations of individual block spins, but our model
adequately describes jFðτÞj2 because our signal is domi-
nated by speckles in low-q regions. Movements of dilute
particles in media are often modeled with continuous time
random walk (CTRW) behavior [18,39,40] where the
decorrelation of speckles at ðq; τÞ is the expected value
of the degree of correlation h weighted by its probability
density function (PDF) PτDW, such that

Fðq; τÞ ¼
X∞

N¼0

PτDWðτ; NÞhðq;NÞ: ð2Þ

We take PτDWðτ; NÞ to be a Poisson distribution
ðτ=τDWÞNe−τ=τDW=N! describing the probability density of
the number of steps N that a particle traveled in time τ, with
variable time cost τDW between each step [Fig. 3(b) inset]
[41,42]. When averaged over all domains and traveling
directions, one can write hðq;NÞ ∼ exp½−ðqRNαÞ2�, assum-
ing a constant displacement R of superdomain boundaries
during each step [40].
Here we used R ∼ 0.8a, the center of the PDF of domain

boundary displacements for a single jump, where a is the
lattice parameter of square ASL [43]. The exponent α
describes the nature of the particle motion and ranges from
0 to 1. Two regimes, α < 1=2 and α > 1=2, correspond to
subdiffusion and hyperdiffusion, respectively. There are
two special cases: α ¼ 1 describes unidirectional motion
over the decorrelation time of the system, commonly
referred to as “ballistic” motion, and α ¼ 1=2 describes
Brownian motion. In Figs. 3(b) and 3(c), we plot the
temperature dependence of τDW and α obtained by indi-
vidually fitting Fðq; τÞ with Eq. (2) for fixed q. Here, the
initial decay in Fðq; τÞ, fit to delay times of ≈2 s, provides
insight into the block-spin collective dynamics. Our analy-
sis does not eliminate the possible existence of faster
(τ < 0.1 sec) or slower dynamics occurring beyond the
initial decay.
In Fig. 3(c), the exponent α starts off close to 0.65 at

335 K and drops to 0.5 as temperature approaches to TN ,
suggesting that the nature of superdomain motion changes
from ballistic to diffusive. This can be explained consid-
ering two types of domain boundaries: superdomain walls
separating two AFM superdomains or phase boundaries
separating AFM superdomains and paramagnetic regions.
Consider, for example, an initially AFM-ordered ground
state that encompasses the whole sample. When a super-
domain wall spontaneously nucleates, the system tries to
minimize the energy by pushing the superdomain wall out
of the sample. The superdomain wall travels until it is
scattered by another wall, is pinned by a defect, or reaches
the sample’s edge. Therefore, at low temperatures,

superdomain walls appear to behave ballistically. On the
other hand, at high temperatures, the sample is broken into
small AFM superdomains separated by paramagnetic
regions. In this regime, each AFM superdomain can
move independently with no additional energy cost, and
therefore the phase boundaries exhibit diffusive motion.
This interpretation is also consistent with a continuous
phase transition in which boundary effects lead to phase
separation [43].
The characteristic time cost for domain wall motion τDW

increases at low temperatures and diverges as superdomain
walls freeze at a singularity, as shown in Fig. 3(b). This
type of behavior is often described using the Vogel-
Fulcher-Tammann (VFT) law in systems dominated by
domains [44,45]:

τDW ¼ τo exp ½DTo=ðT − ToÞ�; ð3Þ

where To is the freezing-in temperature and D is the
fragility of the system. The smaller the “fragility,” the more
the system deviates from an Arrhenius-type behavior.
The decay time, τDW in Eq. (3), is well fitted using

τo ¼ 0.003ð2Þ s, D ¼ 0.17ð6Þ, and To ¼ 326ð2Þ K [solid
line in Fig. 3(b)], indicating that the superdomain wall
movement exponentially slows as T approaches To [46].
The value of D obtained is surprisingly similar to that of
magnetic domains of a spiral antiferromagnet (D ¼ 0.14
[47]). Our τo, the characteristic fluctuation time as T → ∞,
is large compared to values observed for nanoparticles
(≈10−10 s) [48]. This is consistent with the nature of
superdomain boundary fluctuations that necessarily require
multiple block-spin flips. If we consider individual block-
spin flips in the limit that T ≫ To, we find τDW is well
modeled by fluctuations involving approximately 4 block
spins. (See Supplemental Material [16], Sec. S6.) This
result is consistent with AFM domains fluctuating by one
lattice unit cell when surrounded by PM regions.
Finally, we compare our random walk model to a

stretched exponential function: FðτÞ ¼ a exp ½−ðτ=τFÞγ� þ
ð1 − aÞ that is commonly employed to understand XPCS
data for collective phenomena in glasses and jammed
systems [44,45,47]. τF and γ are the decay constant and
stretched exponent, respectively, while (1 − a) accounts for
the finite, temperature dependent offset explained earlier.
Figure 4 compares the temperature dependence of τF
obtained from the stretched exponential model to τDW
obtained from the random walk model. A VFT fit of the
form in Eq. (3) (solid lines) found that both models yieldD
and To values within the range of expected error. The ratio
of τo from the stretched exponential fit to τo from the
CTRW model is ∼20, comparable to the total number of
lattice units across the sample. This suggests that τF
is related to the travel time of a superdomain boundary
(taking approximately 20 τDW to move out of the sample).
In addition, the exponent γ decreases from 1.8 at
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T ¼ 335 K to ≈1 as the sample temperature approaches TN
[Fig. 4(b)]. Our random walk model therefore gives a
natural explanation for γ where a compressed (γ > 1) and a
simple (γ ¼ 1) exponential indicate collective and diffusive
motion of superdomain boundaries, respectively.
In summary, resonant coherent x-ray scattering provides

unique insights for understanding the equilibrium behavior
of a square ASL near its AFM-to-PM phase transition
temperature TN . As temperature decreases below TN, AFM
superdomain sizes increase and magnetic fluctuations slow.
Applying both CTRWand the stretched exponential models
to the time correlation of the AFM speckle pattern revealed
a dynamical crossover temperature below TN near which
superdomain wall motion changes from diffusive to bal-
listic. Below this crossover temperature, the superdomain
walls exponentially slow down with decreasing temper-
ature and freeze in at To as determined by the VFT model.
These results show that superdomain-wall nucleation,

annihilation, and motion are important for governing the
complex equilibrium fluctuations of square artificial spin
lattices. The methods described here can be readily applied
to studies of the effects of disorder and defects in various
artificial lattices [49–53]. Similar collective motion of spins
likely exists in other phase separated materials and could
be explored using coherent x rays [47,54]. Moreover, our
findings concerning equilibrium fluctuations may prove
important when engineering ASL for information technol-
ogy or other applications [26–29,55].
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