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In addition to the Kitaev (K) interaction, candidate Kitaev materials also possess Heisenberg (J) and off-
diagonal symmetric (Γ) couplings. We investigate the quantum (S ¼ 1=2) K-J-Γ model on the honeycomb
lattice by a variational Monte Carlo method. In addition to the “generic” Kitaev spin liquid (KSL), we find
that there is just one proximate KSL (PKSL) phase, while the rest of the phase diagram contains different
magnetically ordered states. The PKSL is a gapless Z2 state with 14 Majorana cones, which in contrast to
the KSL has a gapless spin response. In a magnetic field applied normal to the honeycomb plane, it realizes
two of Kitaev’s gapped chiral spin-liquid phases, of which one is non-Abelian with Chern number ν ¼ 5

and the other is Abelian with ν ¼ 4. These two phases could be distinguished by their thermal Hall
conductance.
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The Kitaev model [1] of bond-dependent Ising-type spin
interactions on the honeycomb lattice offers exactly soluble
examples of both gapped and gapless quantum spin liquids
(QSLs). The magnetically disordered ground states of
different QSLs are the consequence of strong intrinsic
quantum fluctuations and provide particularly clean reali-
zations of different fundamental phenomena. The gapped
Kitaev QSL has Z2 Abelian topological order, while the
quintessential “Kitaev spin liquid” (KSL) is the gapless
state whose low-energy excitations form two Majorana
cones, whereas its Z2 flux excitations are gapped. In an
applied magnetic field, the Majorana cones become gapped
and the resulting state is a chiral spin liquid (CSL) with
Ising-type non-Abelian anyonic excitations, which have
potential application in fault-tolerant topological quantum
computation.
Thus, the experimental realization of the Kitaev model

has moved to the forefront of research in strongly correlated
materials. While transition-metal compounds with strong
spin-orbit coupling do realize Kitaev-type interactions
[2,3], these “candidate Kitaev” materials typically possess
in addition significant non-Kitaev interactions, which lead
to Na2IrO3 [4,5] and α-RuCl3 [6–9] exhibiting magnetic
order at low temperatures. Although H3LiIr2O6 [10] is not
ordered, it appears to show strong impurity and extrinsic
disordering effects. At the same order in a strong-coupling
treatment [11], the Kitaev (K) interaction is accompanied
by Heisenberg (J) and off-diagonal symmetric (Γ) inter-
actions, and thus the focus of the field has become the
understanding of “proximate Kitaev” physics in this class
of model, also under applied magnetic fields [12–15] and
pressures [16].
In this Letter, we investigate the K-J-Γ extended Kitaev

model by variational Monte Carlo (VMC) studies of a

spinon representation. Guided by the projective symmetry
group (PSG), we obtain the global K-J-Γ phase diagram
and show that it contains two distinct QSL phases among
several classically ordered phases. One QSL, at small J and
Γ, is the generic KSL. At larger Γ we find one proximate
KSL (PKSL), a non-Kitaev QSL sharing the same PSG as
the KSL but with 14 Majorana cones in the first Brillouin
zone and gapless spin excitations. In an applied ĉ-axis field,
all 14 cones are gapped and the PKSL hosts two exotic CSL
phases, one with non-Abelian anyons and one with Abelian
anyons. These results shed crucial new light on the
parameter-space constraints and (induced) spin-liquid
phases of candidate Kitaev materials.
In the candidate materials known to date, K < 0 is

believed to be ferromagnetic [17–20], while J has been
argued to have both signs and extended nature, but all
studies of the Γ (and Γ0) term(s) take Γ > 0 [21,22]. The
role of Γ in a fully quantum model remains little studied
[23], but from classical models Γ is thought to explain the
strongly anisotropic field response of α-RuCl3 [8,21]. In
general, it is not yet accepted that a J ¼ 0 (i.e., K-Γ) model
can support a magnetically ordered ground state [21], and it
has been claimed on the basis of exact diagonalization of
small systems [11,24] and infinite-size density-matrix
renormalization-group studies of narrow cylinders [25]
that multiple QSL phases may exist in the K-J-Γ model
at small J.
The model we consider is

H ¼
X

hi;ji∈γ
KSγi S

γ
j þ JS⃗i · S⃗j þ ΓðSαi Sβj þ Sβi S

α
j Þ; ð1Þ

where hi; ji denotes nearest-neighbor sites and γ both the
bond type on the honeycomb lattice and the spin index.
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Because of the spin-orbit coupling, the symmetry group of
the model, G ¼ D3d × ZT

2 where ZT
2 ¼ fE; Tg is time

reversal, is finite, meaning its elements are discrete oper-
ations combining the space-time and spin degrees of
freedom.
We find the ground state of the S ¼ 1=2 K-J-Γmodel by

VMC calculations, which is a powerful method for the study
of spin-liquid phases. We first introduce the fermionic
slave-particle representation Smi ¼ 1

2
C†
i σ

mCi, where C†
i ¼

ðc†i↑; c†i↓Þ, m≡ x; y; z, and σm are Pauli matrices. The

particle-number constraint, N̂i ¼ c†i↑ci↑ þ c†i↓ci↓ ¼ 1,
should be imposed at every site to ensure that the size of
the fermion Hilbert space is the same as that of the physical
spin. This complex fermion representation is equivalent to
the Majorana representation introduced by Kitaev [1]. It
has a local SU(2) symmetry that is independent of the
SU(2) spin-rotation operations and can be considered as a
gauge structure [26], as discussed in Sec. S1A of the
Supplemental Material (SM) [27]. The spin interactions
in Eq. (1) are rewritten in terms of interacting fermionic
operators and decoupled into a noninteracting mean-field
Hamiltonian (Sec. S1B of the SM [27]), which for the most
general spin-orbit-coupled spin liquid has the form

Hmf ¼
X

hi;ji∈γ
Tr½Uð0Þ

ji ψ
†
iψ j� þ Tr½Uð1Þ

ji ψ
†
i ðiRγ

αβÞψ j�

þ Tr½Uð2Þ
ji ψ

†
i σ

γψ j� þ Tr½Uð3Þ
ji ψ

†
i σ

γRγ
αβψ j�; ð2Þ

where ψ i¼ðCiC̄iÞ, C̄i¼ðc†i↓;−c†i↑ÞT ,Rγ
αβ¼−iðσαþσβÞ= ffiffiffi

2
p

is a rotation matrix, and the quantitiesUðmÞ
ji , with γ specified

by hi; ji, are mean-field parameters.
In the states described by Eq. (2), the SU(2) gauge

symmetry is usually reduced to U(1) or Z2, which is known
as the invariant gauge group (IGG) [35]. The Majorana
mean-field solution of the Kitaev model has IGG Z2.
Because the KSL is a special (exactly soluble) point in
the model of Eq. (1), one expects a finite regime of QSL
states connected adiabatically to it; following Ref. [36] we
call this the generic KSL (GKSL). A QSL ground state
preserves the full symmetry groupG and so does the mean-
field Hamiltonian. However, a general symmetry operation
of this Hamiltonian is a space-time and spin operation
in G combined with an SU(2) gauge transformation. These
new symmetry operations form a larger group, known as
the PSG, which is equivalent to a central extension
of G by the IGG (Sec. S2 of the SM [27]). The PSG of
the KSL is known exactly [37] and the corresponding
mean-field Hamiltonian must respect it. The PSG reduces
the number of independent parameters and, as detailed

in Sec. S3 of the SM [27], the coefficients UðmÞ
ji in Eq. (2)

are constrained to the forms Uð0Þ
ji ¼ iη0 þ iðρa þ ρcÞ,

Uð1Þ
ji ¼ iðρa − ρc þ ρdÞðτα þ τβÞ þ iη3ðτx þ τy þ τzÞ,

Uð2Þ
ji ¼ iðρa þ ρcÞτγ þ iη5ðτx þ τy þ τzÞ, and Uð3Þ

ji ¼
iðρc − ρa − ρdÞðτα − τβÞ.
In addition, we allow competing magnetically ordered

phases by including the termH0
mf ¼ 1

2

P
i Mi · C

†
i σCi in the

mean-field Hamiltonian [23]. The ordering pattern ofMi is
set from the classical solution within the single-Q approxi-
mation, leaving only the amplitudeM and the canting angle
ϕ to be determined variationally (Sec. S3 of the SM [27]).
The power of the VMC approach is that it allows the
particle-number constraint to be enforced locally, by
performing Gutzwiller projection of the mean-field ground
states to obtain the trial wave functions jΨðxÞi ¼
PGjΨmfðxÞi, where x denotes the variational parameters
ðρa; ρc; ρd; η0; η3; η5;M;ϕÞ. These are determined by min-
imizing the trial ground-state energy, EðxÞ ¼
hΨðxÞjHjΨðxÞi=hΨðxÞjΨðxÞi, in calculations performed
on tori of up to 14 × 14 unit cells, i.e., 392 lattice sites.
Because the final variational states depend crucially on the
mean-field Hamiltonian, a meaningful VMC procedure
requires a careful choice and comparison of decoupling
channels, and we have tested many spin-liquid and mag-
netic Ansätze (Sec. S3). Figure 1 shows the VMC phase
diagram of the K-J-Γ model at zero applied field. As a
benchmark, we note that our phase boundaries at Γ ¼ 0,
J > 0 agree quantitatively with those of Ref. [38].
Although the mean-field phase diagram contains a number
of candidate QSLs, VMC calculations reveal that only two
are robust. One is the GKSL, whose regime of stability is
bounded approximately by jJ=Kj ¼ 0.2 at Γ ¼ 0 and
Γ=jKj ¼ 0.15; this result provides a quantitative statement
of the region of relevance for the considerations of
Ref. [36]. The second we name the PKSL, one of our
central results being that there is only one QSL proximate
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FIG. 1. (a) Phase diagram of the quantum K-J-Γ model for
K < 0 in the limit of large system size. There are two QSL phases
of different types but with the same PSG, the GKSL and the
PKSL. The magnetically ordered phases are antiferromagnetic
(AFM), stripe, incommensurate spiral (IS), zigzag, and ferro-
magnetic (FM) order. (b) Detail of the limit jKj=Γ → 0, where all
phases are magnetically ordered; the transitions occur at
J=Γ ¼ 0.15, 0.05, and −0.75.

PHYSICAL REVIEW LETTERS 123, 197201 (2019)

197201-2



to the GKSL. The GKSL and PKSL have the same PSG
despite being physically quite different states. In contrast to
the spinon excitation spectrum of the GKSL, which has two
Majorana cones in the first Brillouin zone [Fig. 2(a)], the
PKSL has 14 [Figs. 2(b) and 2(d)]. These cones are
protected from local perturbations by the combination of
spatial-inversion and time-reversal symmetry, as detailed in
Sec. S3 of the SM [27]. We discuss the nature of the cones
and the magnetic response of the PKSL below.
The majority of the phase diagram (Fig. 1) consists of the

magnetically ordered states familiar from the classical
K-J-Γ model [11], namely AFM, stripe, incommensurate
spiral (IS), zigzag, and FM ordered phases. Unsurprisingly,
the boundaries around the QSL phases are rather different
in the quantummodel, with FM being stronger at low Γ and
IS extending to J < 0. We comment that not only can an
incommensurate ordered phase still exist for S ¼ 1=2, but it
can also exist throughout the phase diagram from (near) a
pure K-Γ to a pure J-Γ model; as expected of our ordered
phases, the spiral angles we obtain agree with Ref. [11]. We
draw attention to the fact that all of the J ¼ 0 line in Fig. 1
is ordered for Γ=jKj > 0.55, with IS order until Γ=jKj ¼
0.7 and zigzag order all the way to and in the pure Γ model
[39]. This result contradicts an infinite-size density-matrix
renormalization-group study of [25] that reported only QSL
phases in the K-Γ model; as we show in Sec. S4 of the SM
[27], that conclusion is relevant only for very narrow

cylinders. While the existence of order has been called
into question at J ¼ 0 [21], it is robust in the S ¼ 1=2
model in VMC.
We state without demonstration that all of the phase

transitions between the magnetically ordered phases are
first-order, which is the simplest possibility when two
phases of differing order parameters meet. A more complex
situation is possible for the transitions between ordered and
QSL phases, which could be second-order or even show an
intermediate phase with coexisting magnetic and Z2 topo-
logical order (Sec. S3 of the SM [27]). However, we find at
all points we have investigated that these transitions are also
first-order. Finally, the transition between the GKSL and
PKSL is also sharply first-order, as may be observed both in
the ground-state energy [Fig. 2(c)] and through disconti-
nuities in the optimal variational parameters (not shown).
Neither the GKSL nor the PKSL dispersion [Figs. 2(a)
and 2(b)] evolves significantly around the level-crossing.
Returning to the spin response of the QSLs, it is helpful

to consider Kitaev’s representation [1] of the spin in terms
of Majorana fermions, Sm ¼ ibmc (m ¼ x, y, z), which we
review in Sec. S1 of the SM [27]. In the GKSL, the c
fermions are gapless and the bm fermions gapped, but the
gapped spin response of the KSL becomes gapless when
both J and Γ are nonzero [36]. This is verified in our
VMC calculations in the form of c-bm hybridization in the
low-energy limit, but as shown in Sec. S5 of the SM [27]
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FIG. 2. (a) Spinon dispersion in the GKSL, drawn with Γ=jKj ¼ 0.1 and J ¼ 0, showing 2 Majorana cones. (b) Spinon dispersion in
the PKSL, drawn with Γ=jKj ¼ 0.3 and J ¼ 0, showing 14 Majorana cones. (c) Ground-state energy per site of theK-J-Γmodel at fixed
J=jKj ¼ 0.05, showing a clear first-order phase transition. (d) Locations of the 14 cones of the PKSL in the first Brillouin zone.
(e) Dynamical structure factor of the PKSL at low energy (integrated over energies 0 ≤ ω=jKj ≤ 0.08). (f) Dynamical structure factor of
the PKSL at ω=jKj ¼ 0.15 (integrated over 0.13 ≤ ω=jKj ≤ 0.17).
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this hybridization remains very weak throughout the GKSL
regime, such that low-energy spin excitations, if present,
have very little weight. By contrast, in the PKSL we find
that the quasiparticles are strongly hybridized combinations
of c and bm fermions at all wave vectors and energies,
which is a consequence of the finite η3 parameter induced
by the Γ term. Thus, low-energy spin excitations arise from
both intra- and intercone spinon processes and the spin
response of the PKSL is gapless, as we illustrate in Fig. 2(e)
by computing the dynamical structure factor Sðq;ωÞ at the
mean-field level for energy ω ¼ 0 (Sec. S5). The positions
of the maxima are readily understood from the cone
structure shown in Fig. 2(d). For energies beyond the cone
region, Sðq;ωÞ takes on a complex and continuous form
[Fig. 2(f)].
One of the most exciting properties of the KSL is that it

becomes a gapped, non-Abelian CSL in an applied mag-
netic field of any orientation not orthogonal to an Ising
(spin) axis. Specifically, Kitaev classified 16 different types
of CSL based on the statistics of their vortices, which are
defects arising from inserted flux quanta [1]. He showed
that these Z2 vortices are Abelian anyons when the Chern
number ν is even and non-Abelian anyons when ν is odd,
leading to a clear illustration of topological properties, edge
modes, fusion rules, and applications in quantum compu-
tation. The KSL in a field provides an example of the class
ν ¼ 1, where the non-Abelian statistics arise due to
unpaired Majorana modes (σ in Table I) associated with
the vortices. By VMC calculations in a field Bkĉ (Sec. S6
of the SM [27]), we verify at the mean-field level that these
modes are also present in the GKSL; this non-Abelian
regime is terminated at a Z2 deconfinement-to-confinement
transition [38].
In the PKSL, each of the seven pairs of cones becomes

gapped in a field Bkĉ and contributes a Chern number
ν ¼ �1. We demonstrate by VMC calculations at Γ=jKj ¼
0.3 and J ¼ 0 that a CSL phase with ν ¼ 5 is obtained at
small jBj. As shown in Fig. 3, there are two successive,
weakly first-order phase transitions with increasing jBj, to a
ν ¼ 4 CSL and then to a trivial phase connected to the fully
polarized state. (We comment that this trivial, Z2-confined
phase is obtained from both the ν ¼ 1 and ν ¼ 0mean-field
states, as shown in Sec. S6 of the SM [27].) Thus the PKSL

provides a specific realization of two little-known cases
from Kitaev’s “16-fold way,” and we use it in Sec. S6 to
illustrate their vortex modes at the mean-field level. The
ν ¼ 5 phase is a non-Abelian CSL while the ν ¼ 4 phase is
Abelian. Quite generally, in a CSL with Chern number ν,
there are ν branches of chiral Majorana edge states, each of
which contributes to a total chiral central charge c− ¼ ν=2.
The thermal Hall conductance, which is a physical observ-
able, is therefore quantized to κxy=TΛ ¼ c−, where Λ ¼
πk2B=6h is a constant. From the number of associated
midgap modes it can be shown that the vortex carries
topological spin eiνðπ=8Þ, and from its fusion with itself or
with a fermion we obtain the anyonic character of the CSLs
as listed in Table I. These results are further verified within
our VMC analysis by calculating the ground-state degen-
eracy (GSD) on a torus, which matches the number of
topologically distinct quasiparticle types.
In contrast to the emergence in an arbitrary applied field

of fully gapped quantum states, which can be distinguished
by their ν or edge c− numbers, is the possibility that, for
specific field directions, the system remains a gapless Z2

QSL over a finite range of field magnitudes [23]. In the
PKSL we find this to be the case for Bkðx − yÞ, where the
six black and blue cones shown in Fig. 2(d) remain gapless
at low fields, whereas the other cones become gapped. For
Bkðy − zÞ, the black and red cones remain gapless and for
Bkðz − xÞ the black and green cones. With increasing field,
pairs of cones move towards each other, but a first-order
transition occurs to a fully gapped state at a critical field
Bc ≃ 0.017jKj=gμB (Fig. 3). This reflects the fact that many
competing states appear at these low energy scales. We
leave the response of the PKSL to fields of arbitrary
orientation and strength to a future study.
The K-J-Γ model is expected to provide the basis for

interpreting the physics of 4d and 5d transition-metal
compounds. While robust magnetic order suggests strong
J terms in Li2IrO3 and Na2IrO3 [4,5], α-RuCl3 is thought to
have only weak J [20] and many different K and Γ
combinations have been suggested [21,22]. Our phase

TABLE I. Field-induced CSL states realized to date in K-J-Γ
models. ν is the Chern number. KL is the Kalmayer-Laughlin
state [23,40]. 1 denotes the vacuum and ε the fermion. σ denotes
the vortices in the non-Abelian phases (ν ¼ 1 and 5), which have
topological spin eiðπ=8Þ and eið5π=8Þ. e and m are the two different
types of vortex in the Abelian CSL (ν ¼ 4), which are both
semions. GSD abbreviates the ground-state degeneracy on a
torus. c− is the chiral central charge.

Parent state CSL Topological sectors GSD c−

PKSL ν ¼ 5 σ; ε; 1 3 5=2
PKSL ν ¼ 4 e;m; ε; 1 4 2
KSL ν ¼ 1 σ; ε; 1 3 1=2
U(1) Dirac KL e; 1 2 1

0 0.4 0.8 1.2 1.6

0 0.01 0.02 0.03 0.04 0.05

FIG. 3. Phase diagrams of the PKSL (Γ=jKj ¼ 0.3, J ¼ 0) in a
magnetic field applied in the x̂ − ŷ direction and in the ĉ ¼
ðx̂þ ŷþ ẑÞ= ffiffiffi

3
p

direction. “6-cone” denotes a phase whose low-
energy spinon dispersion has six remaining cones.
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diagram provides a quantitative guide to the low-J, low-Γ
parameter regime required to observe QSL behavior,
including by application of pressure to the known candidate
materials. It also offers a detailed framework within which
to interpret both the physics of the magnetically disordered
material H3LiIr2O6 [10] and the reported observation
of a half-integer-quantized thermal Hall conductance in
α-RuCl3 [41].
In summary, we have obtained the phase diagram of the

quantum K-J-Γ model on the honeycomb lattice. We find
two quantum spin-liquid phases, the generic KSL and one
proximate KSL, that have the same projective symmetry
group but quite different low-energy physics. The PKSL is
a gapless Z2 QSL with 14 Majorana cones and a gapless
spin response. In an applied field it realizes a gapped, non-
Abelian chiral QSL with ν ¼ 5 and an Abelian one with
ν ¼ 4. We also map the wide variety of magnetically
ordered phases appearing in the quantum limit. Our phase
diagram provides an essential guide to the physics of
candidate Kitaev materials.
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