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Strongly correlated kagome magnets are promising candidates for achieving controllable topological
devices owing to the rich interplay between inherent Dirac fermions and correlation-driven magnetism.
Here we report tunable local magnetism and its intriguing control of topological electronic response near
room temperature in the kagome magnet Fe3Sn2 using small angle neutron scattering, muon spin rotation,
and magnetoresistivity measurement techniques. The average bulk spin direction and magnetic domain
texture can be tuned effectively by small magnetic fields. Magnetoresistivity, in response, exhibits a
measurable degree of anisotropic weak localization behavior, which allows the direct control of Dirac
fermions with strong electron correlations. Our work points to a novel platform for manipulating emergent
phenomena in strongly correlated topological materials relevant to future applications.
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The tunability of topologically protected states through
interactions betweenmagnetismandelectronic band structure
provides a novel route towards designing complex quantum
materials for technological applications. Theoretically,
kagome structures that break time-reversal symmetry have
been proposed to host nontrivial topological electronic states
with controllability provided by local magnetism [1–5].
Experimental investigations of these proposals have been
recently made possible, with the discovery of inherent Dirac-
Weyl fermions and magnetism-related Berry curvature in
strongly correlated kagomemagnets, such as Fe3Sn2,Mn3Sn,
and Co3Sn2S2 [6–10]. In addition to being analogs of the
graphene lattice, which features massless Dirac bands [11],
magnetic interactions in the kagome magnets lead to exotic
magnetic ground states and consequently impact the materi-
als’ electronic properties [6,7].
Rhombohedral Fe3Sn2 (space group R3̄m) consists of a

Fe3Sn bilayer separated by a single Sn layer [Fig. 1(a)] with
lattice constants a ¼ 5.34 and c ¼ 19.79 Å in the hexago-
nal lattice notation. Fe atoms form a breathing kagome
structure that comprises hexagons and equilateral triangles
with alternating Fe bond lengths [Fig. 1(b)]. The Fe3Sn

bilayer is mainly responsible for both the nontrivial topo-
logical states and strongly correlated magnetism, and thus
leads to a direct connection between the two. Electronically,
angle-resolved photoemission (ARPES) [6] and scanning
tunneling microscopy quasiparticle interference (QPI) mea-
surements [7] revealed massive Dirac bands at low temper-
atures and transport measurements identified large intrinsic
anomalous Hall signals (AHE) from 2 to 400 K [6,12–15].
Magnetically, Fe3Sn2 is a soft ferromagnet with electron
spins residing on Fe atoms [16,17]. The Fe moments are
noncollinear and transition from a high-temperature ferro-
magnetic (HT) phase with a Curie temperature of 640 K, in
which the spins are closer to the c axis, to a low-temperature
(LT) phase (below ∼100 K), in which the spins are close to
the kagome plane [16–18]. Lorentz transmission electron
microscopy observes the presence of mesoscopic stripelike
domains of alternating magnetization within the kagome
planes in the HT phase; the domains become much larger,
and without clear spin texture, in the LT phase [19,20].
Because of its very high Curie temperature, manipulation of
spin texture in the HT phase provides a possible control of
the topological band structure near room temperature.
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We begin by characterizing the bulk spin texture of the
ferromagnetic domains with small-angle neutron scattering
(SANS) [22]. Neutron scattering probes the magnetic
correlations through the interaction between neutron spins
and magnetic moments of the sample. The scattering cross
section is proportional to the square of the magnetic
moment perpendicular to the neutron momentum transfer,
which is in plane, so that the moment within the kagome
planes contributes selectively to the scattering cross section
while the c-axis component of the moment always con-
tributes, allowing measurements of magnetic textures. For
simplicity, we redefine the a axis to be along a nearest-
neighbor Fe-Fe bond, and note that within the Fe kagome
plane there are three equivalent axis choices a, a0, a00,
separated by 120° rotations, as indicated in Fig. 1(b). With
respect to the measurement geometry shown in Fig. 1(c),
measurements were performed with the selected a axis
oriented approximately in the horizontal or vertical direc-
tion, and the magnetic field was always applied in the
horizontal direction (8° to 12° difference between the field
and a axis due to limitations of in situ sample-orientation
control; see Fig 1 and the Supplemental Material [23]).
Representative SANS data for Fe3Sn2 are shown in

Fig. 1. The instrument was set such that the magnetic field
direction was either approximately parallel [Figs. 1(h)–1(l)]
or perpendicular to Fe-Fe bond in kagome plane
[Figs. 1(m)–1(q)], respectively. In zero magnetic field,
the magnetic scattering is nearly isotropic at 100 K
[Fig. 1(d)], consistent with the absence of magnetic texture

in the LT phase [16,17], and it evolves to a much broader
and anisotropic pattern above 100 K [Figs. 1(f), 1(g); see
Supplemental Material [23] for additional data]. To further
examine the magnetic phases, we used muon spin rotation
spectroscopy to probe the temperature dependence of
multiple local spontaneous field at the muon stopping
site [24]. The largest spontaneous field contribution is
shown in Fig. 2(a), and the muons sense a sharp change
slightly above 100 K, with a large relaxation rate in the
vicinity of the transition. We will focus on behavior at
200 K, which is clearly in the HT phase.
The anisotropic zero-field SANS patterns in Figs. 1(h)

and 1(m) reflect the stripelike domain texture of the HT
phase. The minimum width of the scattering is parallel to
the average orientation of the stripe domains, while the
large momentum width is in the direction of small domain
width. The preferred alignment of stripe spin texture with
one of the three a axes can be attributed to shape
anisotropy. When the a axis (sample) is rotated by 90°,
the anisotropy of the scattering follows. Applying a
magnetic field along (approximately) the preferred a axis,
the stripe domain orientation first becomes better aligned
with the field, and the scattering narrows in the corre-
sponding direction. With increasing field, the magnetic
domains with moments along the field direction grow at the
expense of the oppositely polarized domains. By 0.3 T, the
parallel-magnetization domains dominate, and the scatter-
ing collapses to a narrow peak. When the field is applied
in plane but perpendicular to the preferred a axis, as in
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FIG. 1. Fe3Sn2 structure and representative SANS data. (a) Structure of Fe3Sn2. (b) Fe breathing kagome lattice with short and long
Fe bond lengths (red and blue, 2.59 and 2.75 Å). a, a0, a00 denote equivalent Fe-Fe bond directions and⊥ denotes direction perpendicular
to a. (c) Instrument setup for our SANS measurements. The neutron intensity is proportional to the square of magnetic momentM that is
perpendicular to neutron kinetic momentum transfer q. (d)–(g) SANS scattering patterns in zero magnetic field. (f),(g) Formation of bulk
local magnetism when increasing temperature above 100 K. (h)–(l) and (m)–(q) Scattering patterns with magnetic fields parallel and
perpendicular to the Fe-Fe bond, respectively. (e),(i),(n) are corresponding fits of scattering patterns in (d),(h),(m) using the anisotropic
Lattice Lorentzian model [21]. White arrows indicate the direction of Fe-Fe bond a.
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Figs. 1(o), 1(p), and 1(q), the domains rotate. Because the
spins prefer to orient along Fe-Fe directions, the reoriented
domains occur along the a0 and a00 axes, whose average
direction is close to the field direction. For a quantitative
analysis, the scattering cross sections were fit with a Lattice
Lorentzian model [25], for which scattering anisotropy
quantifies phase disorder of the mesoscopic magnetic
structure:

dσðqÞ
dΩ

∼
X ξaξ⊥

π2
ð1þ q2aξ2aÞ−1ð1þ q2⊥ξ2⊥Þ−1; ð1Þ

where a and ⊥ labels lattice orientations. ξ and q are the
corresponding correlation length and momentum transfer
(Supplemental Material [23]). This model assumes a
distribution of domains oriented along the a axes, with
the number of domains along each direction and the
average correlation lengths parallel and perpendicular to
the a axes as fitting parameters. Figure 2(b) shows
examples of constant intensity contours for each of the 3
domain orientations at two different magnetic fields. The
field dependences of the domain populations and correla-
tion lengths are plotted in Figs. 2(c) and 2(d). The change in
the domain distribution as a function of magnetic field, Δn,
for each domain orientation ϕM depends on the applied
field direction ϕH as j sinðϕH − ϕMÞj. The inset of Fig. 2(c)
shows that the ratio Δn=j sinðϕH − ϕMÞj grows with field
in a manner consistent with an effective three-domain
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FIG. 2. Magnetic properties. (a) Temperature dependence of the
internal magnetic field (Hint) and μSR relaxation rate (λ), showing
a phase transition around 100 K. (b) Neutron intensity for domain
along a, a0, a00 at H⊥ ¼ 0 and 0.125 T. (c) Spin direction
(magnetic domain) distribution n along a, a0, a00. Inset shows the
change of spin distribution Δn ¼ nðHÞ − nðH ¼ 0Þ divided by
j sinðϕH − ϕMÞj, where ϕH is the magnetic field direction and ϕM
is the angular direction of a, a0, a00, respectively. jΔn= sinðϕH −
ϕMÞj for all spin configuration can be described by an effective
three-domain (J ¼ 1) Brillouin function. (d) Parallel and
perpendicular field dependences of magnetic correlation lengths
(domain size). A rearrangement of spin correlation at the
mesoscopic scale is observed in the case of H⊥.
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FIG. 3. In-plane magnetoresistivity. (a), (b) Angular variation of in-plane magnetoresistivity at 200 K in different magnetic fields for
S1 and S2, respectively. The current is fixed along the Fe-Fe bond a (0°) and the magnetic field rotates in the plane. The angle between
field and current is shown as the polar axis. Magnitude of the butterfly-wing pattern shows the variation of resistivity from its average
value Δρ=ρavg, where Δρ ¼ ρ − ρavg. ρ is resistivity at each angle and ρavg is the averaged resistivity for all field directions. Black
arrows indicate Δρ=ρavg maximum at angle ϕmax. (c) Magnetic field dependence of ρavg, where Δρavg ¼ ρavgðHÞ − ρavgðH ¼ 0Þ.
(d) Comparison between Fe moment and Δρ=ρavg maximum as a function of field strength. Inset is an illustration of device geometry.
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(J ¼ 1) Brillouin function (Supplemental Material [23]).
The fitted correlation lengths should largely reflect
domain size, and we see in Fig. 2(d) that they grow as
field increases.
Having identified the field-dependent control of the

magnetic domain textures in Fe3Sn2, we next investigate
the electronic response at 200 K (Fig. 3). Resistivity was
measured as a function of magnetic field strength and
orientation, using the geometry shown in the inset of
Fig. 3(d), where the current is applied along an a axis.
The dominant effect is that the resistivity decreases as the
field is applied [Fig. 3(c)]; this can be understood in terms
of bulk weak localization for Dirac bands, as we will
discuss below. In addition, the resistivity develops an
anisotropic response to the orientation of the field rela-
tive to the current, as illustrated in Figs. 3(a) and 3(b).

The amplitude of the anisotropic magnetoresistivity (MR)
follows the bulk magnetization, as shown in Fig. 3(d),
while the angle of maximum MR ϕmax evolves as field
increases. Reproducible butterfly patterns with an alterna-
ting sequence of positive and negative lobes of MR are
observed for multiple samples. In the main text, we show
results for samples S1 and S2 (additional S1, S2 data is
in Supplemental Material [23] with a third sample S3);
differences result from the current being aligned to an a
axis that is or is not magnetically preferred. These butterfly
patterns are different from the angular magnetoresistivity
for uniform ferromagnetic materials, for which the resis-
tivity is usually twofold symmetric and highest when the
magnetic field is parallel to the current direction [21].
Moreover, the MR does not vary in a symmetric fashion
with respect to the magnetically preferred a axis. At 75 K,
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when magnetic spin texture is less clear in the LT phase,
partial recovery of the magnetoresistivity to the lattice
symmetry is observed.
For further analysis, it is convenient to convert resistivity

to conductivity, which is obtained by inverting the resis-
tivity tensor. Because the transverse resistivity ρxy is 1 order
of magnitude smaller than the longitudinal resistivity ρxx
for Fe3Sn2, conductivity σxx ¼ ρxx=ðρ2xx þ ρ2xyÞ ∼ 1=ρxx.
We further define σ2D ¼ σxxc, where c is the c-axis lattice
parameter. The field-induced changes in 2D conductivity
for S1 and S2 are presented in Figs. 4(a) and 4(b),
respectively. For each field direction, the conductivity
change can be described by weak localization of Dirac
bulk bands based on the Hikami-Larkin-Nagaoka equation
[26,27]

Δσ2D ∼ −α e
2

h

�
1

2
F

�
Hϕ þ 2HSO

H

�

þ F

�
Hϕ þHSO

H

�
− 1

2
F

�
Hϕ

H

��
; ð2Þ

where FðxÞ ¼ ψð1
2
þ xÞ − lnðxÞ, and ψ is the digamma

function.Hϕ is the phase-coherence characteristic field and
HSO is the spin-orbit characteristic field. The fitting
parameters are the prefactor α (expected to be of order
1), Hϕ, HSO. For S1 and S2, the fitted spin-orbit character-
istic lengths lSO ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=4eHSO

p
are similar and approxi-

mately direction independent (lSO ∼ 12 nm for S1 and 9 nm
for S2). However, Hϕ and α have notable angular depend-
ences with a phase difference of ∼240° for S1 and S2,
corresponding to the difference in orientation of the
magnetically preferred a axis. Hϕ features a maximum
approximately along a axes, which means that the corre-
sponding coherence length, lϕ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=4eHϕ

p
, is a minimum

in this direction, with values ranging over 90–170 nm for
S1 and 50–170 nm for S2 [Fig. 4(b)]. These numbers are
intriguingly consistent with the half magnetic domain
size (∼100�200 nm) measured by SANS at small fields
[Fig. 2(d)]. We tentatively compare Hϕ with the magnetic
domain distribution and found that the two trace the same
angular dependence (∼j sinðϕH − ϕMÞj), which is indica-
tive of spin texture-determined quasiparticle phase coher-
ence. The comparison is better for S1 than S2, which is
associated with a more symmetric hexagonal sample shape
of S1. Furthermore, we observe a modulation of prefactor α
that also features an approximate twofold symmetry
[Fig. 4(c)]. The maximum of α does not align with the
a axes but has a phase shift (∼ − 20 to −30°). As spin
texture and bulk magnetization are much more effectively
aligned along a axes, this phase shift remains a puzzle.
Theoretically, it was proposed for materials with a large
Dirac mass, weak localization of bulk bands dominates the
electronic response [27], and a variation in Dirac mass
impacts α [1,28,29]. The prefactor α extracted from the
magnetoresistivity equals a single-band α multiplied by
number of bands involved. We estimate the single band α

based on previous calculations, without considering band
interactions in Fig. 4(d) [27]. Within this picture, the results
suggest that, similar to α, the Dirac mass is also modulated
with a twofold symmetry, consistent with previous QPI
measurements [7]. We illustrate the Dirac band dispersion
with varying Dirac masses using modified pseudospin
Dirac model [1,30] in Fig. 4(e).
Having demonstrated the effective tuning of local

magnetism and its direct control of electronic response
in Fe3Sn2, our results have far reaching implications. Fe
spins in Fe3Sn2 are separated by Sn into bilayer kagome
planes, and their magnetism and topological band structure
are quasi-two-dimensional. Interestingly, similar magnetic
and electronic properties have recently been discovered for
other kagome systems such as Co3Sn2S2 [10] and van der
Waals metals such as Fe3GeTe2 [31,32], for which both
low-dimensional ferromagnetism and anomalous Hall
effect have been observed. Manipulating the mesoscopic
magnetic textures in these materials can give rise to a new
control of their topological properties. Enhancing the
measurable effects in electronic response tuned by a small
applied magnetic field provides a feasible new platform for
the realization of functional topological devices.
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