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We propose mechanisms for the spin Hall effect in metallic systems arising from the coupling between
conduction electrons and local magnetic moments that are dynamically fluctuating. Both a side-jump-type
mechanism and a skew-scattering-type mechanism are considered. In either case, dynamical spin
fluctuation gives rise to a nontrivial temperature dependence in the spin Hall conductivity. This leads
to the enhancement in the spin Hall conductivity at nonzero temperatures near the ferromagnetic instability.
The proposed mechanisms could be observed in 4d or 5d metallic compounds.
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Introduction.—The spin Hall (SH) effect is the gener-
ation of spin current along the transverse direction by an
applied electric field [1,2]. Because it allows us to manipu-
late magnetic quanta, i.e., spins, without applying a
magnetic field, this would become a key component in
creating efficient spintronic devices. By combining the SH
effect and its reciprocal effect, the inverse SH effect [3], a
variety of phenomena have been demonstrated (for recent
review, see Refs. [4,5]). As in the anomalous Hall effect [6],
the relativistic spin-orbit coupling (SOC) plays the funda-
mental role for the SH effect, and both intrinsic mecha-
nisms [7,8] and extrinsic mechanisms [9–12] have been
proposed. Whereas many theoretical studies considered
static disorder or impurities at zero temperature, the effect
of nonzero temperature T in the SH effect has been
addressed using phenomenological electron-phonon cou-
pling [13,14] or first-principle scattering approach [15].
At present, the intensity of the SH effect is too weak for

practical applications [16]. One of the pathways to enhance
the spin-charge conversion efficiency or the SH angle
ΘSH ¼ σSH=σc, where σSHðcÞ corresponds to the SH
(charge) conductivity, is to reduce the charge conductivity
σc. For example, Ref. [17] proposed to use 5d transition-
metal oxides, IrO2, where the strong SOC comes from Ir,
rather than metallic materials. The SH effect in the surface
state of topological insulators with spin-momentum locking
has been also studied [18]. More recently, Jiao et al.
reported the significant enhancement in SH effect in
metallic glasses at finite temperatures [19]. Because such
enhancement is not expected in crystalline systems [20], it
was suggested that local structural fluctuations [13,21]
are responsible for this effect, similar to the phonon
skew-scattering mechanism. Thus, the fluctuations of
lattice or some other degrees of freedom at finite

temperatures could provide a route to improve the effi-
ciency of the SH effect.
For magnetic systems, the effect of finite temperatures

has been studied for the anomalous Hall effect in terms of
skew scattering [22] and resonant skew scattering [23–25].
Theories for the resonant skew scattering were further
developed by considering strong quantum spin fluctuations
for systems with the time-reversal symmetry (TRS), there-
fore for the SH effect rather than the anomalous Hall effect
[26–28]. Later, the relation between the anomalous Hall
effect below the ferromagnetic transition temperature TC
and the SH effect above TC was investigated by including
nonlocal magnetic correlations in Kondo’s model [29,30].
A recent investigation on FexPt1−x alloys also reported the
enhancement in the SH effect near TC [31]. So far, the
magnetic fluctuation at finite temperatures has been theo-
retically treated on a single-site level [26–28] or using static
approximations [22–25,29]. When localized moments have
long-range dynamical correlations near a magnetic insta-
bility, it is required to go beyond such a treatment (e.g., see
Refs. [32–35]). This could open new pathways for novel
spintronics.
In this paper, we address the effect of such magnetic

fluctuations onto the SH effect by calculating the SH
conductivity of a model system in which conduction
electrons are interacting with dynamically fluctuating local
magnetic moments. We start from defining our model
Hamiltonian and then identify two different mechanisms
for the SH effect. The similarity and dissimilarity with the
SH effect arising from impurity potential scattering or
phonon scattering are discussed. The SH conductivity is
computed using theMatsubara formalism by combining the
self-consistent renormalization theory [34]. We show that
the SH conductivity is enhanced at low temperatures when
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the system is in close vicinity to the ferromagnetic critical
point at T ¼ 0. Possible realization of this effect in 4d or 5d
metallic compounds is discussed.
Model and formalism.—To be specific, we consider the

s-d or s-f Hamiltonian proposed by Kondo [22,36], H ¼
H0 þHK with H0 ¼

P
k;ν εka

†
kνakν and

HK¼−
1

N

XNm

n

X
k;k0

X
ν;ν0

eiðk0−kÞ·Rna†kνak0ν0

×

�
2ðJn ·sνν0 Þ

�
F 0þ2F 1ðk ·k0ÞgþiF 2Jn ·ðk0×kÞ

þiF 3

�
ðJn ·sνν0 ÞðJn ·ðk0×kÞÞþðJn ·ðk0×kÞÞðJn ·sνν0 Þ

−
2

3
ðJn ·JnÞðsνν0 ·ðk0×kÞÞ

��
: ð1Þ

Here, að†Þkν is the annihilation (creation) operator of a
conduction electron with momentum k and spin ν, εk ¼
½ðℏ2k2Þ=2m� − μ is the dispersion relation measured
from the Fermi level μ with the carrier effective mass m,
sνν0 ¼ 1

2
σνν0 is the conduction electron spin with σ the Pauli

matrices, and NðNmÞ is the total number of lattice sites
(local moments). Jn is the local spin moment at position
Rn, when the SOC is weaker than the crystal field splitting
and could be treated as a perturbation, or the local total
angular momentum, when the SOC is strong so that the
total angular momentum is a constant of motion.
Parameters F l are related to Fl defined in Ref. [22] as
discussed in the Supplemental Material [36]. In this work,
we focus on three-dimensional systems. While the current
analysis could be applied to other dimensions, lower-
dimensional systems require more careful treatments.
In Eq. (1), F 0;1 terms correspond to the standard s-d or

s-f exchange interaction, acting as the spin-dependent
potential scattering as schematically shown in Fig. 1(a).
F 2;3 terms represent the exchange of angular momentum

between a conduction electron and a local moment. These
terms are odd (linear or cubic) order in Jn and s and induce
the electron deflection depending on the direction of Jn or s
as depicted in Figs. 1(b) and 1(c). As discussed below, the
F 2 term and the F 3 term, respectively, generate the side-
jump- and the skew-scattering-type contributions to the SH
conductivity.
In order to see the different types of contributions, we

analyze the velocity operator, fromwhich the charge current
and the spin current operators are defined. Importantly, a
side-jump-type contribution to the SH effect arises from the
anomalous velocity as in the conventional SH effect. The
velocity operator is defined by v ¼ ði=ℏÞ½H; r�. Among
various terms, lowest order contributions to the spin Hall
conductivity come from

v¼
X
k

ℏk
m

a†kνakν−
i

ℏN

X
n

X
k;k0

X
ν;ν0

eiðk0−kÞ·Rn

×fF 2Jnþ2F 3ðJn ·sνν0 ÞJng×ðk0−kÞa†kνak0ν0 : ð2Þ

Here, a term involving F 1 is neglected because it is
proportional to (kþ k0) and does not contribute to σSH at
the lowest order. The second terms involving F 2;3 are the
anomalous velocity. The charge current and the spin current
are then given by using the velocity operator as jc ¼ −ev
and js ¼ −efð1=NÞPk s

z
νν0a

†
kνakν0 ; vg, respectively. Note

that jc and js have the same dimension.
Now, we consider the side-jump-type mechanism

arising from the anomalous velocity in Eq. (2) combined
with the spin-dependent potential scattering F 0;1 in Eq. (1).
At this moment, one could notice some analogy between
the current model and the previous ones utilizing the
potential scattering Vn [10–12] as F 0;1Jns ↔ Vn and
F 2Jn ↔ λ2Vns; i.e., the spin s dependence is switched
from the anomalous velocity to the scattering term.
Therefore, the second-order processes involving F 0;1

and F 2 terms could generate the side-jump-type contribu-
tion to the SH effect. The diagramatic representation
of this side-jump-type contribution to the SH conductivity
is presented in Fig. 2. Note that this contribution is
OðF 0;1F 2hJnJn0 iÞ. If the F 3 term in the anomalous
velocity is used, it would become OðF 0;1F 3hJnJ2n0 iÞ,
odd order in the local moment. Such a contribution

or

(b) Side jump (c) Skew(a) Potential 

or

Up electron

Down electron

FIG. 1. Scattering processes involving (a) F 0;1 terms, (b) F 2

terms, and (c) F 3 terms. Yellow arrows indicate conduction
electrons, and green arrows indicate local moments. In the F 2ð3Þ
scattering processes, the electron deflection depends on the
direction of the local moment (the electron spin), leading to
the side-jump-type (skew-scattering-type) contribution to σSH.

FIG. 2. Diagrammatic representation for the side-jump contri-
bution. Solid (wavy) lines are the electron Green’s functions (the
spin fluctuation propagators). Squares (circles) are the spin
(charge) current vertices, with filled symbols representing the
velocity correction with F 2, i.e., side jump. Filled triangles are
the interaction vertices with F 0;1.
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vanishes when the local moments have the TRS in a
paramagnetic phase above magnetic transition temperature.
How about the skew-scattering-type contribution?

Unlike the side-jump-type contribution, the F 2 does not
contribute to σSH arising from the third-order perturbation
processes combined with F 0;1 terms. This is because such
processes areOðF 2

0;1F 2hJnJn0Jn00 iÞ and vanish by the TRS
in the local moments. In fact, the skew-scattering-type
contribution arises from the third-order processes involving
F 0;1 and F 3 terms as OðF 2

0;1F 3hJnJn0J2n00 iÞ. Therefore,
such skew-scattering-type contributions are possible with-
out introducing unharmonic (third-order) magnetic corre-
lations, while it is second order in the spin fluctuation
propagator OðD2Þ as discussed below. This contrasts with
the phonon skew scattering, where unharmonic phonon
interactions are essential [13].
Matsubara formalism and spin fluctuation.—In what

follows, we use the Matsubara formalism to compute the
SH conductivity given by

σSHðiΩlÞ ¼
i

iΩlV

Z
1=T

0

dτeiΩlτhTτjsxðτÞjcyð0Þi; ð3Þ

where Ωl is the bosonic Matsubara frequency, and V is the
volume of the system. At the end of the analysis, iΩl is
analytically continued to real frequency as iΩl → Ωþ i0þ.
We will then consider the dc limit, Ω → 0, to obtain σSH.
This formalism allows one to treat conduction electrons

coupled with dynamically fluctuating local moments Jn. To
describe the latter, we consider a generic Gaussian action
given by AGauss ¼ 1

2

P
q;l D

−1
q ðiωlÞJqðiωlÞJ−qð−iωlÞ with

D−1
q ðiωlÞ ¼ δþ Aq2 þ jωlj=Γq. Here, ωl ¼ 2lπT is the

bosonic Matsubara frequency, and A is introduced as a
constant so that Aq2 has the unit of energy. δ is the distance
from a ferromagnetically ordered state and is related to the
magnetic correlation length as ξ2 ∝ δ−1. JqðiωlÞ is a space
and imaginary-time τ Fourier transform of JnðτÞ, where we
made the τ dependence explicit. In principle, δ depends on
temperature and is determined by solving self-consistent
equations for a full model including non-Gaussian
terms [32–35,37]. Γq represents the momentum-dependent
damping. In clean metals close to the ferromagnetic
instability, Γq ¼ Γq. When elastic scatting exists due to
impurities or disorders, q has a small cutoff qc ∼ l−1 ¼
1=vFτc with l being the mean free path of conduction
electrons, vF ¼ ℏkF=m the Fermi velocity, and τc the
carrier lifetime. Therefore, the damping term at q≲ qc
has to be replaced by Γqc [38]. With this propagator D,
the spatial and temporal correlation of Jn is given
by hTτJnðτÞJn0 ð0Þi¼ðT=NÞPq;le

−iωlτþiq·ðRn−Rn0 ÞDqðiωlÞ.
Theoretical analyses based on this model have been
successful to explain many experimental results on itinerant
magnets [34].

Because of the phase factor eiq·ðRn−Rn0 Þ, the ferromag-
netic fluctuation is essential for the SH effect. When the
spin fluctuation has characteristic momentum Q ≠ 0,
eiQ·ðRn−Rn0 Þ has destructive effects.
Spin-Hall conductivity.—With the above preparations,

now we proceed to examine the SH conductivity. Based on
the diagrammatic representations in Figs. 2 and 3, σSH is
expressed in terms of electron Green’s function G and the
propagator of local magnetic moments D. The full expres-
sion is presented in Ref. [36].
We carry out the Matsubara summations, the energy

integrals, and the momentum summations as detailed in
Ref. [36] to find

σside jump
SH ≈

2e2n2m
m

τcIðT;δÞ
�
1

3
F 0k2F−

2

5
F 1k4F

�
F 2NF ð4Þ

for the side-jump contribution and

σskew scat
SH ≈

4e2ℏn3m
m2

τ2cI2ðT;δÞðF 0þF 1k2FÞ2F 3

2k4F
15

NF ð5Þ

for the skew-scatting contribution. Here, nm ¼ Nm=N is the
concentration of local moments, and NF ¼ mkF=2π2ℏ2 is
the electron density of states per spin at the Fermi level.
The function IðT; δÞ defined in Ref. [36] is the direct
consequence of the coupling between conduction electrons
and the dynamical spin fluctuation. There are a number of
limiting cases where the analytic form of IðT; δÞ is
available. For clean systems (Γq ¼ Γq, i.e., no momentum
cutoff) at low temperatures, where δþ AðaT=ℏvFÞ2 ≪
ℏvF=Γ is satisfied, IðT; δÞ ≈ ð1=8πδÞðaT=ℏvFÞ3 with a
being the lattice constant. When the system is on the
quantum critical point for the ferromagnetic ordering, δ is
scaled as δ ∝ T4=3 [34]. Thus, IðT; δÞ ∝ T5=3 is expected.
For clean systems at high temperatures, where δþ
AðaT=ℏvFÞ2 ≫ ℏvF=Γ is satisfied, IðT; δÞ ≈ ½ðℏvFÞ=
ð4π2Γδ2Þ�ðaT=ℏvFÞ3. At such high temperatures, δ is
linearly dependent on T [34,39]. Therefore, one expects
IðT; δÞ ∝ T. Similar analyses are possible for dirty systems,
where Γq has a small momentum cutoff. In this case, one
expects IðT; δÞ ∝ T at both low temperatures and high
temperatures (see Ref. [36] for details).

FIG. 3. Diagrammatic representation for the skew-scattering
contribution. Filled pentagons are the interaction vertices with
F 3. The definitions of the other symbols or lines are the same as
in Fig. 2.
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In addition to IðT; δÞ, the temperature dependence of σSH
is induced by the carrier lifetime τc. This quantity comes
from several different contributions as

τ−1c ¼ τ−1sf þ τ−1ee þ τ−1ep þ τ−1dis þ…: ð6Þ
Here, τ−1sf is from the scattering due to the spin fluctuation.
UsingHK and the same level of approximation, τ−1sf is given
by τ−1sf ≈ ½ð2n2mÞ=ℏ�IðT; δÞðF 0 þ 2F 1k2FÞ2 [36]. τ−1sf and
IðT; δÞ have the same T dependence as schematically
shown in Fig. 4(a). τ−1ee and τ−1ep are from the electron-
electron interactions and the electron-phonon interactions,
respectively. Their leading T dependence is given by τ−1ee ≈
τ−1ee;0ðT=TFÞ2 [40] and τ−1ep ≈ τ−1ep;0ðT=TDÞ5 [41,42], where
TFðDÞ is the Fermi (Debye) temperature. τ−1dis is from the
disorder effects, and its T dependence is expected to be
small. Figure 4(b) summarizes theT dependence of τ−1dis;ee;ep.
The overall T dependence of σSH is determined by the

combination of IðT; δÞ and τc. The strong enhancement is
thus expected at the ferromagnetic critical point, where the
magnetic correlation length ξ ∝ δ−1=2 diverges as T−2=3.
This results in τ−1sf and hence the electrical resistivity σ−1c

scaled as T5=3 [39]. Since τ−1sf ∝ IðT; δÞ, σside jump
SH and

σskew scat
SH are expected to be maximized when the spin

fluctuation dominates τc as

σside jump
SH;max ≈

e2ℏ
m

F 2k2F
3F 0

NF ð7Þ

and

σskew scat
SH;max ≈

e2ℏ3

m2nm

2F 3k4F
15F 2

0

NF; ð8Þ

respectively, at low but nonzero temperature Tmax. This
Tmax is approximately given by TFð5τee;0=τdisÞ1=2 when
TF ≪ TD or TDðτep;0=2τdisÞ1=5 when TF ≫ TD. As the
temperature is lowered to zero, σSH goes to zero as
σside jump
SH ∝ τdisIðT; δÞ ∝ T5=3 and σskew scat

SH ∝ τ2disI
2ðT; δÞ ∝

T10=3 because of the nonzero τ−1dis, and the residual SH
conductivity is due to disorders or impurities. At higher
temperatures, the carrier lifetime is suppressed by the
electron-electron or electron-phonon interaction, and there-
fore σSH is decreased. The overall T dependence of
σskew scat
SH . is schematically shown in Fig. 4(c).
In dirty systems, Γq involves a small cutoff momentum.

Because τdis is dominant, we expect σside jump
SH ∝ T and

σskew scat
SH ∝ T2 at low temperatures as discussed in

Ref. [36]. When the temperature is increased above
T ∼minfTF; TDg, σSH decreases with T because τc is
suppressed. Thus, σSH is expected to be maximized at
around Tmax as discussed for clean systems, yet the
maximum value depends explicitly on τc’s. In fact, the
enhancement in τ−1sf;ee;ep with increasing T always induces a
momentum cutoff in the damping term Γq at high temper-
atures. Therefore, we expect that clean systems and dirty
systems behave similarly at high temperatures, i.e.,
σside jump
SH ∝ τcT and σskew scat

SH ∝ τ2cT2.
Discussion.—How realistic is the current spin fluctuation

mechanism? Here, we provide rough estimations of
σside jump
SH;max and σskew scat

SH;max . According to a free electron model,
F 0 is expected to be ∼0.1 eV for both transition metal and
actinide compounds [43]. (In Ref. [43], J0, corresponding
to F 0 in this study, was estimated to be 0.7 × 10−12 erg for
the s-d interaction in Mn and 2.5 × 10−13 erg for the s-f
interaction in Gd.) Since F 2;3k2F involve the integral of
higher-order spherical Bessel functions, j1;3, i.e., p-wave
scattering, than F 0, j0, i.e., s-wave scattering [22], F 2ð3Þk2F
would be an order (two orders) of magnitude smaller than
F 0. Therefore, taking a rough estimation F 2k2F ∼ 0.01 eV,
F 3k2F ∼ 0.001 eV and typical values of kF=π ∼ 109 m−1

and ½ðℏ2k2FÞ=2m� ¼ μ ∼ 10 eV [44] for s electrons in
metallic compounds, optimistic estimations are σside jump

SH;max ∼
103 Ω−1m−1 and σskew scat

SH;max ∼ 105 Ω−1 m−1. The difference

in magnitude between σside jump
SH;max and σskew scat

SH;max . comes from

the small factor F 2=F 0 in σside jump
SH;max and the large factor

μ=F 0 in σskew scat
SH;max . Thus, σskew scat

SH;max . could be comparable to
the largest σSH reported so far [16].
Could there be systems that show the SH effect by the

proposed mechanisms? The crucial ingredients are the
coupling between conduction electrons and localized but
not ordered magnetic moments. Suitable candidate materi-
als would be 4d or 5d metallic compounds with partially
filled d shells, such as Ir, Pt, W, and Re. Because of the
large SOC than 3d compounds, the intrinsic mechanism
could contribute to the SH effect. One route to enhance σSH

(a)

(b)

(c)

FIG. 4. Schematic temperature dependence of (a) τ−1sf and
IðT; δÞ, (b) τ−1dis (dashed line), τ−1ee (dotted line), and τ−1ep (dash-
dotted line), and (c) σskew scat

SH . Red lines and blue lines correspond
to the clean system and the dirty system, respectively. At a low
(intermediate, high) temperature regime, τ−1c is dominated by τ−1dis
(τ−1sf , τ

−1
ee or τ−1ep ), creating σskew scat

SH;max at Tmax.
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further is doping with magnetic 3d transition metal ele-
ments to enhance the ferromagnetic spin fluctuation. It
would be possible to distinguish between the intrinsic
mechanism and the extrinsic mechanisms discussed in this
work by comparing crystalline samples and disordered
samples such as metallic glasses. In fact, metallic glasses
might be a good choice in trying to enhance the SH angle
ΘSH. Since the carrier lifetime in metallic glasses is
dominated by the structure factor, the temperature depend-
ence of τc ∼ τdis is small [45,46]. Using the same formal-
ism, the longitudinal charge conductivity is given by
σc ¼ 2e2τck3F=3mπ2. Therefore, ΘSH ¼ σSH=σc is more
sensitive to the spin fluctuation contribution than
σSH itself. Since σskew scat

SH . is dominant, the spin fluctuation
contribution IðT; δÞ could be extracted from σSH=σ2c.
Recently, Ou et al. reported very large ΘSH > 0.34 in
FexPt1−x alloys near TC [31]. While the detailed
analyses remain to be carried out, with the typical con-
ductivity in their sample σc ∼ 106 Ω−1 m−1 and our theo-
retical σskew scat

SH;max ∼ 105 Ω−1 m−1, ΘSH is estimated to be
∼0.1, that is comparable to this report.
To summarize, we investigated the effect of fluctuating

magnetic moments on the spin Hall effect in metallic
systems. We employed the microscopic model developed
by Kondo for the coupling between conduction electrons
and localized moments [22] and analyzed the fluctuation of
local moments using the self-consistent renormalization
theory by Moriya [34]. As in the conventional spin Hall
effect due to the impurity scattering, a side-jump-type
mechanism and a skew-scattering-type mechanism appear.
Because of the dynamical spin fluctuation, the spin Hall
conductivity has a nontrivial temperature dependence,
leading to the enhancement at nonzero temperatures near
the ferromagnetic instability. The skew scattering mecha-
nism we proposed could generate a sizable spin Hall effect.
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