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It has been recently established that optoelectronic and nonlinear transport experiments can give direct
access to the dipole moment of the Berry curvature in nonmagnetic and noncentrosymmetric materials.
Thus far, nonvanishing Berry curvature dipoles have been shown to exist in materials with substantial spin-
orbit coupling where low-energy Dirac quasiparticles form tilted cones. Here, we prove that this topological
effect does emerge in two-dimensional Dirac materials even in the complete absence of spin-orbit coupling.
In these systems, it is the warping of the Fermi surface that triggers sizable Berry dipoles. We show indeed
that uniaxially strained monolayer and bilayer graphene, with substrate-induced and gate-induced band
gaps, respectively, are characterized by Berry curvature dipoles comparable in strength to those observed in
monolayer and bilayer transition metal dichalcogenides.
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Introduction.—Because of their deep relation to top-
ology [1,2] the family of Hall effects [3,4], the most famous
member of which is the quantization of the Hall conduct-
ance in strong magnetic fields [5–7], have been intensively
scrutinized in recent years. A prerequisite for any Hall
effect to appear is time-reversal symmetry breaking.
Therefore, either magnetic fields or magnetic dopants are
required to have a nonvanishing Hall conductance. It has
been recently established, however, that a Hall-like current
can still be observed in noncentrosymmetric systems as a
nonlinear response to an external electric field [8,9]. Such a
nonlinear Hall current is closely related to the Berry
curvature dipole, which is essentially the first moment of
the Berry curvature in momentum space. As a result,
this nonlinear effect can be used as a direct probe of the
geometry of the Bloch states in time-reversal invariant
systems.
Single-layer transition metal dichalcogenides MX2

(M ¼ Mo, W and X ¼ S, Se, Te) [10] have been theoreti-
cally predicted [11,12] and experimentally verified [13–15]
as material platforms supporting large Berry curvature
dipoles. These materials possess large spin-orbit coupling
and lack of inversion symmetry in their Td structure.
Furthermore, inversion symmetry breaking can be also
achieved with the aid of external electric fields in the
topological nontrivial 1T 0 phase. A nonlinear Hall effect
has been also predicted [16] and experimentally observed
in bilayer WTe2 [17]. Finally, different noncentrosymmet-
ric three-dimensional materials have been proposed to
feature sizable Berry curvature dipoles. These include
the topological crystalline insulator SnTe [18], which
undergoes a ferroelectric distortion at low temperatures
[19], time-reversal symmetric Weyl semimetals in the TaAs

materials class [8], as well as the giant Rashba material
BiTeI [20].
The common trait of all these materials is their strong

spin-orbit coupling and the presence of low-energy Dirac
quasiparticles forming tilted Dirac cones. In particular, the
tilt of the Dirac cones does not change the Berry curvature
of the system but it is crucial to get a corresponding
nonvanishing first dipole moment. The aim of this work is
to show that this topological effect emerges even in the
complete absence of spin-orbit coupling in two-
dimensional Dirac materials. In these systems, the non-
vanishing Berry curvature dipole does not stem from the
presence of tilted Dirac cones but it is due to the warping of
the Fermi surface. We show indeed that a sizable Berry
curvature dipole arises in uniaxially strained single-layer
and bilayer graphene where inversion symmetry is broken
by the existence of a substrate and an external electric field,
respectively. In the absence of shear strains, the non-
vanishing dipole in these materials is generated along
the zigzag direction, which is orthogonal to the armchair
mirror line [Fig. 1(a)]. Even more importantly, the appear-
ance of a finite dipole can only be captured taking explicitly
into account the terms accounting for the warping of the
Fermi surface [Fig. 1(b)] in the low-energy description of
the system. The warping-induced Berry dipole is strongly
enhanced in Bernal-stacked bilayer graphene and reaches
the nanometer scale, which is comparable to the value
experimentally observed in bilayer WTe2 [17].
Berry curvature dipole in strained monolayer

graphene.—We start out by recalling the relation between
the nonlinear Hall current and theBerry curvature dipole as it
can be derived using the semiclassical Boltzmann picture of
transport [8]. In time-reversal invariant, noncentrosymmetric
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crystals applying an ac electric field Ec ¼ ReðEceiωtÞ
induces a current ja ¼ Reðj0a þ j2ωa e2iωtÞ. This nonlinear
current has two Fourier components at zero and twice the
frequency of the applied external field, j0a¼χabcEbE�

c and
j2ωa ¼χabcEbEc. The response function χabc, which can be
expressed as χabc ¼ −ϵadce3τDbd=2ð1þ iωτÞ, with ϵadc
being the Levi-Civita tensor and τ the scattering time,
explicitly contains the Berry curvature dipole [21] defined as

Dbd ¼
Z
k
f0ð∂bΩdÞ; ð1Þ

where ∂a ¼ ∂ka ,
R
k ¼

R
ddk=ð2πÞd and f0 is the Fermi-

Diracdistribution. TheBerry curvatureΩ is defined, as usual,
as the rotor of the Berry connection Aa ¼ −ihukj∂ajuki.
Crystalline symmetries may constrain the dipole to be zero:
in a two-dimensional crystal, the Berry curvature is a
pseudoscalar, and therefore the dipole behaves as a pseudo-
vector contained in the two-dimensional plane. As a result,
for a Berry curvature dipole to be nonvanishing the system
must have at most one mirror symmetry left. If one mirror is
preserved thedipolewill thenbedirected perpendicular to the
mirror line.
The wallpaper group of graphene is p6mm, generated by

the point group C6v and in-plane translations. The point
group C6v is comprised of a threefold rotation C3, a twofold
rotation C2, and the mirror symmetryMx [22]. The twofold
rotation C2, which coincides with inversion since spin-orbit
coupling can be effectively neglected, is immediately
broken assuming a staggered chemical potential between
the two honeycomb sublattices (Semenoff mass [23]). The
latter can be engineered by placing the graphene sheet on a
substrate, for example, lattice-matched h-BN [24,25].
Breaking inversion reduces the point group to C3v, gaps
out the Dirac cones present at the high symmetry points K
and K0 in the Brillouin zone, and allows for a nonvanishing
Berry curvature. To further lower the point group symmetry

to Cv we apply a uniform uniaxial strain to the honeycomb
lattice along one of the two main crystallographic direc-
tions. This uniaxial strain moves the massive Dirac cones
away from the high symmetry points along the ky ¼ 0 line,
as required by the combination of time-reversal Θ and
mirror symmetry Mx. The ky ¼ 0 line is perpendicular to
the mirror line and parallel to the dipole. Although the
existence of a Berry curvature dipole is perfectly allowed
from a symmetry perspective, the corresponding low-
energy theory does not immediately entail the system with
a nonvanishing Berry curvature dipole.
To show this we first discuss the low-energy theory of

strained graphene. The application of strain to the lattice
deforms the primitive cell and the corresponding Brillouin
zone [Fig. 1(b)] but also produces a difference between
hopping amplitudes along the two main crystallographic
directions. To first order in strain and momentum, the
low-energy description of the system shows that the
strain behaves effectively as a pseudogauge field [26]:
H1 ¼ vF½ðξkx þAxÞσx þ kyσy� þ Δσz=2, where vF is
the Fermi velocity, σx;y are the Pauli matrices, ξ is the
valley degree of freedom, Δ is the Semenoff mass, and
Ax ∝ ϵxx − ϵyy is the pseudogauge field generated by the
strain. If a uniform uniaxial strain is applied to the system,
the pure gauge term inH1 can be reabsorbed by performing
a momentum shift: this corresponds to expanding the tight-
binding Hamiltonian around the Dirac point for Δ ¼ 0.
However, as was shown in Ref. [27] both through a
quantum field theory and a tight-binding approach,
the Fermi velocity becomes anisotropic when considering
the momentum-strain coupling. The corresponding
low-energy Hamiltonian which includes momentum-
strain coupling terms is then of the form H2 ¼
ξvxkxσx þ vykyσy þ Δσz=2, where vx and vy are the two
strain-dependent Fermi velocities. The Hamiltonian H2

possesses a finite Berry curvature but still produces a
vanishing Berry curvature dipole unless an extra term
∝ξkxσ0 is added. This can be seen by performing the
integration in Eq. (1) as in Ref. [8].
We will now show that the warping of the Fermi surface

generates a finite Berry curvature dipole regardless of the
presence of a tilt mechanism. By taking into account the
trigonal warping caused by the k2 terms, the effective
Hamiltonian to second order in momentum and first order
in strain is

Hwarped ¼ ξvxkxσx þ vykyσy þ
Δ
2
σz

þ ðλ1k2y − λ2k2xÞσx þ 2ξλ3kxkyσy; ð2Þ

where λ1;2;3 are the warping terms which, in general, are not
equivalent when considering strain-momentum coupling
terms Oðϵk2Þ. The Hamiltonian in Eq. (2) can be derived
from a low-energy expansion of the tight-binding model
following similar steps to the ones in Ref. [27] and the

FIG. 1. (a) Top view of the uniformly strained Bernal-stacked
bilayer graphene lattice. Red and blue carbon atoms correspond
to different layers and are not equivalent due to the applied
voltage that breaks inversion symmetry. Black sites indicate the
overlap between atoms of the two different layers. By applying an
electric field Ex parallel to the dipole Dx, a nonlinear Hall current
JnlH is generated. (b) Strain deformation of the Brillouin zone.
The warped low-energy dispersion is shown in the vicinity of the
two unstrained high symmetry points K and K0.
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Supplemental Material [28]. It is important to note that
although Eq. (2) has anisotropic warping terms, for a
nonzero dipole to exist it is sufficient to consider aniso-
tropic velocities and a C3 symmetric warping. Wewill make
use of this result later on when discussing bilayer graphene.
As shown in Fig. 2, when applying strain the warped

surface deforms shifting the dipole moment from zero to a
finite value leading to a Berry curvature dipole running
along the zigzag direction. Therefore when applying an
electric field E along the dipole direction a nonlinear Hall
current OðE2Þ is generated along the armchair direction.
We have computed the Berry curvature dipole [28] gen-
erated by the two cones, which contribute equally to the
overall response, by continuously changing the carrier
density n and different values of strain. At 5% strain
and for a Semenoff mass Δ ¼ 20 meV a dipole Dx ≈
10−3 nm is found at an electron density n ≈ 1010 cm−2.
This order of magnitude of Dx is comparable to the one
predicted in Ref. [8] for TMDs.
Berry curvature dipole in strained bilayer graphene.—

Having established that uniaxially strained monolayer gra-
phene possesses a sizable Berry curvature dipole, we now
show that the same effect persists also in bilayer graphene in
the (AB) Bernal-stacked structure. Importantly, the Berry
dipole in this material is boosted by over 3 orders of
magnitude. Moreover, in bilayer graphene inversion sym-
metry breaking can be achieved with the application of an

external electric field perpendicular to the layers. The electric
field, in fact, generates a spectral gapΔ and lowers the point
group symmetry from D3d to C3v [29]. Notice that this
inversion symmetry breaking mass can be experimentally
tuned independent of the carrier density [30]. The additional
application of a uniaxial strain reduces the point group toCv
and yields a vanishing Berry dipole perpendicular to the
mirror line. To prove the assertion above,we introduce a low-
energy effective Hamiltonian [31], valid for electron den-
sities up to n ≈ 1013 cm−2 [32,33], explicitly accounting for
the effect of strain [34], reading

Hb ¼
�
−

1

2m
ðk2x − k2yÞ þ ξv3kx þ w

�
σx

−
�
1

m
kxky þ ξv3

�
σy þ

Δ
2
σz: ð3Þ

In the equation above, ξ ¼ �1 is the valley index, v3 is the
Fermi velocity related to the “skew” hopping between the
layers, whereas m is an effective mass directly dependent
on the interlayer coupling. Finally, w ¼ A3 −A0 is the
strain term in the Hamiltonian which can be expressed in
terms of the two pseudogauge fields A0;3.
In the presence of inversion symmetry (Δ ¼ 0), the

strain-free (w ¼ 0) system features a Lifshitz transition [32]
at energy εL ¼ mv23=2 (≈1 meV), where the Fermi surface
splits from a single connected pocket into four different
ones: the electronic dispersion consists of one central Dirac
cone with −π (π) Berry phase at the K (K0) point of the
Brillouin zone and three “leg” Dirac cones, each of which
carries a π (−π) Berry phase. Notice that the distance
between the different cones defines a characteristic momen-
tum κL ¼ mv3=ℏð≈0.035 nm−1Þ. The effect of the strain
on the inversion symmetric system is twofold, as it moves
the Dirac cones away from their unstrained positions and it
promotes changes in the topology of the Fermi surface by
merging the cones together. For − 1 ≤ w=εL ≤ 3 there are
always four Dirac points, two on the ky ¼ 0 line and the
remaining two in a symmetric position with respect to it. At
w ¼ −εL the Dirac cones on the invariant line merge and
become gapped, giving rise to a local minimum in the
dispersion relation which survives until w ≥ −9εL, after
which it becomes a saddle point. For w > 3εL, instead,
there are only the cones on the ky ¼ 0 line and no other
local minima. However, unless Δ ≠ 0, the spectrum
remains gapless and the Berry curvature is zero. As
mentioned above, these gapless spectra become gapped
with an externally applied electric field. Consequently, the
Dirac points become local minima of the dispersion.
The possible topologies of the Fermi surface induced by

the strain are visible in Fig. 3, where we plot the Berry
curvature and the density of Berry curvature dipole at
different values of w andΔ ≠ 0. We notice that the plots are
symmetric for the exchange ky → −ky, as dictated by the

(a) (b)

(c) (d)

FIG. 2. Berry curvature Ω and dipole density ∂kxΩ of the
conduction band corresponding to the Hamiltonian of Eq. (2) for
unstrained (a),(c) and strained (b),(d) monolayer graphene. When
strain is present the Fermi surface is deformed shifting the dipole
moment from zero to a finite value. Momenta are measured in
units of the inverse of the lattice constant a; the Berry curvature in
units of a2 while the dipole density in units of a3.
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combination of time-reversal and mirror symmetry. The
unstrained case is shown in Fig. 3(c). The threefold C3
rotation symmetry constrains the total Berry dipole to be
zero in this case. It is crucial to notice, however, that while
the central gapped Dirac cone has a vanishing Berry dipole,
the three leg gapped Dirac cones have a nonzero dipole
when taken by themselves. This is because each of the
leg gapped Dirac cones can be described with an effective
low-energy Hamiltonian of the form of Eq. (2) with
λ1 ¼ λ2 ¼ λ3. The perfect cancellation of these three non-
zero contributions due to the threefold rotation symmetry is
lost in the presence of uniaxial strain. Moreover, in the
presence of finite strain also the central gapped cone
yields a nonzero contribution to the Berry dipole.
Figures 3(a)–3(b), 3(d)–3(e) actually suggest that when
strain deforms the cones, a net Berry curvature dipole is
generated. In order to verify this, we have computed the
Berry dipole as a function of the electron density for
different values of w [see Fig. 4]. The mass has been chosen
as Δ ¼ 10εL. The behavior of the total Berry dipole has a
richer structure as compared to the one for monolayer
graphene: it indeed shows cusps and inflection points that
are a consequence of the different Lifshitz transitions and
reflect the richer fermiology of bilayer graphene.
Furthermore, in this material it is possible to tune the
strain in such a way that the sign of the dipole changes upon
increasing the electron density with an external gating [30],
thus inverting the direction of the transverse current or even
suppressing it altogether. More importantly, at w ¼ −5εL,
which corresponds roughly to a 1% strain [34], and for a
gap Δ ¼ 10 meV, we find for n ≈ 1011 cm−2 [30] a
maximum dipole strength of Dx ≈ 1 nm. This value is
three orders of magnitude larger than that of single-layer

(a)

(b)

(c)

(d)

(e)

FIG. 3. Berry curvature Ω and dipole density ∂kxΩ of the
conduction band corresponding to the low-energy Hamiltonian of
Eq. (3) for different values of the strain: (a) w ¼ −5εL,
(b) w ¼ −1εL, (c) w ¼ 0, (d) w ¼ 1εL, (e) w ¼ 5εL. All plots
are shown for the same carrier density fixed by placing the Fermi
energy EF at the Lifschitz transition in the unstrained w ¼ 0 and
gapped case [panel (c)]. Momenta are measured in units of κL,
the Berry curvature in units of 1=κ2L, and the dipole density in
units of 1=κ3L.

FIG. 4. Berry curvature dipole, measured in units of 1=κL, in
bilayer graphene for Δ ¼ 10 meV and various strains w as a
function of the electron density n measured in units of κ2L, where
κL ≃ 0.035 nm−1. Densities of this order of magnitude have been
experimentally reported in Refs. [30,35,36].
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graphene, and is comparable to the Berry dipole exper-
imentally found in bilayer WTe2 [17]. As shown in the
Supplemental Material [28], even higher values on the tens
of nanometer scale can be found by decreasing the
inversion symmetry breaking mass.
Conclusions.—To wrap up, we have shown that non-

vanishing Berry curvature dipoles can emerge even in
the complete absence of spin-orbit coupling in two-
dimensional Dirac materials as a result of the warping of
the Fermi surface. We have in fact proved that, in the
presence of substrate-induced and gate-induced band gaps,
respectively, uniaxially strained monolayer and Bernal-
stacked bilayer graphene do possess sizable Berry curva-
ture dipoles. In the bilayer structure, the Berry dipole is
strongly enhanced and its value is comparable to the one
experimentally observed in bilayer WTe2. Since the warp-
ing of the Fermi surface is ubiquitous, we expect that our
results apply to a large number of two-dimensional materi-
als where strain engineering can be used to achieve the
minimum symmetry constraints for a nonvanishing Berry
curvature dipole. The corresponding nonlinear Hall effect
can thus be used as a way to directly probe the geometric
properties of Bloch states in a large number of time-reversal
invariant two-dimensional materials.

We are indebted to our collaborators Sheng-Chin Ho,
Ching-Hao Chang, and Tse-Ming Chen for related work
on this subject [37]. C. O. acknowledges support from a
VIDI grant (Project 680-47-543) financed by the
Netherlands Organization for Scientific Research (NWO).
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