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A better understanding of interfacial mechanisms is needed to improve the performances of
electrochemical devices. Yet, simulating an electrode surface at fixed electrolyte composition remains
a challenge. Here, we apply a finite electric field to a single electrode held at constant potential and in
contact with an aqueous ionic solution, using classical molecular dynamics. The polarization yields two
electrochemical interfaces on opposite sides of the same metal slab. The net charge on one electrode surface
is the opposite of the net charge on the other, maintaining overall charge neutrality of the metal. The
electrode surface charge fluctuations are compensated by the adsorption of ions from the electrolyte,
forming a pair of electric double layers with aligned dipoles. This opens the way towards the efficient
simulation of electrochemical interfaces using any flavor of molecular dynamics, from classical to first-
principles-based methods.
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Despite many advances over the past decades [1,2], the
efficient simulation of full electrochemical cells at the
molecular scale, using electronic structure based calcula-
tions, remains a daunting task. This is due to their slab
structure, since the minimal experimental setup consists of
an electrolyte between two electrodes. The system is
generally simplified by simulating one interface only,
but the main conceptual difficulty is to find a way to
charge the electrode surface at fixed composition of the
electrolyte. Several methods have recently emerged [3–5],
where the system is allowed to exchange electrons with a
reservoir at fixed voltage (grand-canonical approach), but
they all rely on the use of continuum descriptions for the
electrolyte. These models, which are generally based on a
Poisson-Boltzmann theory [6], remain mostly qualitative
and an atomistic description would be preferable (this is
also true because the solvent may actively participate to
electrochemical reactions [7,8]). This is almost impossible
to do since it would be necessary to remove or insert ions to
counterbalance the electrode charge fluctuations.
Here, we propose an alternative route to simulate

electrochemical cells. Our approach is based on the
coupling of a finite field with a system consisting in an
electrolyte and a single electrode. Finite field methods,
developed in the framework of the modern theory of
polarization, consist of imposing a macroscopic field
(electric field [9], polarization [10], or electric displacement
[11]) via an extended Hamiltonian accounting for the
interaction between the system and the fixed field. They
have recently been adapted and applied to the study of
electrical double layers at solid-liquid interfaces, and more
precisely charged [12] or polar [13] insulator-electrolyte

interfaces. Electrochemical systems are by nature more
complex since they involve metallic electrodes whose
charge distribution is not fixed but depends on the
surrounding medium and the applied potential. Because
of the long simulation times related to the relaxation of the
electrical double layer (which is typically longer than the
nanosecond), we establish here a proof of concept by using
a classical molecular dynamics (MD) setup. Indeed, even if
metals can only be accurately described in the framework
of quantum mechanics, models have been developed to
reproduce the electrostatics in classical or mixed quantum
and classical simulations [14,15]. In this contribution we
extend the finite electric field method to an electrolyte
interacting with such a model metallic electrode.
In the following, we focus on the description of the

electrostatics, the van der Waals interactions being repre-
sented by the conventional Lennard-Jones model. The
charge density in any point of space is given by

ρðrÞ ¼
XN
i¼1

qiδðr − riÞ þ
XM
j¼1

qjη3π3=2 exp ½−η2ðr − rjÞ2�;

ð1Þ
where the first term is the contribution of the electrolyte,
represented by a distribution of point charges with qi the
partial charge of the atom i ∈ ½1; N� and ri its position;
δ is the Dirac distribution. The second term represents the
atoms of the metallic electrode, in which each site j ∈
½1;M� is immobile (with position rj) and carries a charge qj
which is spatially distributed following a Gaussian charge
distribution of width η−1. In order to represent the metallic

PHYSICAL REVIEW LETTERS 123, 195501 (2019)

0031-9007=19=123(19)=195501(5) 195501-1 © 2019 American Physical Society

https://orcid.org/0000-0003-3560-9273
https://orcid.org/0000-0001-5198-4650
https://orcid.org/0000-0002-1753-491X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.195501&domain=pdf&date_stamp=2019-11-04
https://doi.org/10.1103/PhysRevLett.123.195501
https://doi.org/10.1103/PhysRevLett.123.195501
https://doi.org/10.1103/PhysRevLett.123.195501
https://doi.org/10.1103/PhysRevLett.123.195501


character of the electrodes, the latter charges are allowed to
fluctuate in response to the electrolyte fluctuations and thus
are part of the microscopic degrees of freedom [14,16]. The
Hamiltonian of the system is written as

HPBC ¼ KðpNÞ þUðrN;qMÞ; ð2Þ

where KðpNÞ is the kinetic energy which depends on
the ion momenta pN ¼ fp1;…;pNg and UðrN;qMÞ the
potential energy, which depends on the ion positions
rN ¼ fr1;…; rNg and charges of the electrode qM ¼
fq1;…; qMg. We have appended a superscript PBC (peri-
odic boundary conditions) to indicate that the electrostatic
energies and forces are computed using the standard Ewald
summation technique. All the atoms within an electrode
are held at constant potential by enforcing the following
condition on each atom:

ΨPBC
j ¼ ∂UPBC

C

∂qj ¼ ΨJ; ð3Þ

whereΨJ is the prescribed potential of electrode J to which
the atom j belongs andUPBC

C is the Coulombic contribution
to the energy, given by

UPBC
C ¼ 1

2

ZZ
ρðrÞρðr0Þ
4πϵ0jr − r0j drdr

0: ð4Þ

Note that this expression will contain a self energy for
the interaction of each Gaussian charge density with itself
only (it is omitted for the point charges).
Formally, solving the set of self-consistent equations

given by Eq. (3) is equivalent to minimizing UPBC
C −P

j ΨJqj with respect to the charges. Since this function
is quadratic in the fluctuating charges qj [see Eq. (4)], the
minimization can be efficiently performed with conjugate
gradients. Note that we add an additional constraint by
forcing the sum of the electrode charges to be null [17].
The minimal components of an electrochemical cell are

two electrodes and an electrolyte between them. In classical
MD, the computational cost is not prohibitive so it is
relatively easy to simulate complete systems instead of a
single electrode surface. The conventional setup to simulate
such systems is illustrated in the top panel of Fig. 1. In the
following, we will refer to this system as the electrolyte-
centered supercell (ECS). It is simulated using the 2D
Ewald summation [18,19] since the two electrodes are held
at different potentials (ΨJ ¼ Ψleft orΨright). We note x and y
the two directions along which PBCs are used in this setup.
Finite field (E) simulations can be performed using

the extended Hamiltonian introduced by Stengel et al.
in Ref. [11] and is written as

HE ¼ HPBC − ΩP ·E; ð5Þ

where HPBC is the Hamiltonian defined by Eq. (2), Ω is the
volume of the supercell, and P the polarization per unit
volume. In the modern theory of polarization, the dipole
moment of a unit cell involving infinite periodic systems
is viewed as a multivalued quantity, since it depends on
the choice of the position of the periodic boundaries.
Nevertheless, this is not a significant issue since only
differences in polarization matter in the dynamics and in the
calculation of physical properties, in practice via the
itinerant polarization [20]:

PitinerantðtÞ ¼ Pitinerantð0Þ þ
1

Ω

XN
i¼1

qiΔriðtÞ; ð6Þ

where Δri is the displacement of the atom between time
t ¼ 0 and t for the “unfolded” trajectory, i.e., not taking
jumps in position (hence polarization) across the periodic
boundaries. The system must be periodic in the direction in
which the finite electric field is applied, which implies the
use of 3D PBCs. A field E corresponds to a drop of Poisson
potential across the cell ΔΨ ¼ −ELz, where Lz is the
length of the box (and not the distance between the two
electrode surfaces) in the direction of the field. From the
practical point of view, a consequence of the use of 3D
PBCs is that now the two electrodes of the ECS necessarily
merge, yielding a single electrode at fixed potential ΨJ ¼
Ψelectrode. The simulation cell can then be represented with
the electrode at its center, yielding the conductor-centered
supercell (CCS) shown in the bottom panel of Fig. 1.
Contrarily to the constant applied potential simulations,
it is now the presence of the finite field that induces the

FIG. 1. Top: electrolyte-centered supercell (2D PBCs), with
fixed applied potential between two electrodes (ΔΨ ¼
Ψright − Ψleft). Bottom: conductor-centered supercell (3D PBCs),
with a finite field E and a single electrode in which the potential
of the atoms is set to the same value Ψelectrode.
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polarization of the electrode and potential drop at the two
electrode-electrolyte interfaces.
Coupling fluctuating charges to model conductors with

finite field simulations requires two important adaptations
of both methods. On the one hand, the cell polarization
includes a contribution from the fluctuating charges as

PconductorðtÞ ¼
1

Ω

XM
j¼1

qjðtÞrj: ð7Þ

This additional term does not depend on the position
of the electrode inside the supercell since we enforceP

j qj ¼ 0. On the other hand, the determination of the
partial charges via the constraint of fixed potential includes
an additional contribution to the electrostatic energy and
potential due to the finite field. From the extended
Hamiltonian [Eq. (5)] and the expression of the electrode
contribution to polarization [Eq. (7)], one obtains the
generalization of Eq. (3) as

Ψj ¼ ΨPBC
j − rj ·E ¼ ΨJ: ð8Þ

As an extension of the constant applied potential case,
the self-consistent expressions given by Eq. (8) are now
solved by minimizing UPBC

C −ΩP · E −
P

j ΨJqj with

respect to the charges. Since P is a linear function of
the charges, the performances of the conjugate gradient
minimizer are not affected by this setup.
In order to test this new approach, we simulate two

systems, one at constant applied potential between two
distinct electrodes and the other with the finite field method
and a single fixed-potential electrode as shown on Fig. 1.
The electrode(s) consist of a model structure made of a
cubic crystal with the NaCl lattice constant, with the (111)
plane facing the liquid. The intermolecular interactions
consist of electrostatic interactions and Lennard-Jones
potentials using Lorentz-Berthelot mixing. The electrode
sites Lennard-Jones parameters are the ones of Cl− [21].
The electrolyte consists of an aqueous solution of NaCl
composed of 603 extended simple point charge model
water molecules [22] and 20 ion pairs [21]. The cross-
sectional area is 2.20 nm2 and the length along the z axis
Lz ¼ 11 nm.
The simulations were performed with a time step of 2 fs

in the NVT ensemble at 298 K using a Nosé-Hoover
thermostat with a coupling constant of 0.4 ps. The systems
were equilibrated during 10 ns before a production run
of 10 ns.
For the finite field simulations, we use the CCS con-

figuration with 3D PBCs. The single electrode, which is
made of 12 planes of atoms, is set at null potential and the
field E ranges from 0 to 2 Vnm−1. For the constant applied
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FIG. 2. The single electrode behaves as two distinct constant potential electrodes. (a) Average of the total accumulated charge on
the positive side as a function of the applied potential. The error bars correspond to the standard deviation of the charge distribution.
(b) Normalized distributions of the instantaneous total charge on the positive half-electrode for various finite electric fields (E ¼ 0.01,
0.1, and 1 Vnm−1 from left to right, red lines) or the corresponding applied voltages (ΔΨ ¼ 0.11, 1.1, and 11 V for a cell length of
11 nm from left to right, blue lines). (c) Snapshot of the positive electrode for a finite field of 0.5 Vnm−1 (left) and the corresponding
applied potential of 5.5 V (right), for the same electrolyte configuration. The atoms are colored according to their instantaneous charge,
between 0 e (red) and 0.1 e (blue).
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potential simulations, we set up the ECS configuration with
2D PBCs. In this setup the two electrodes are of equal
dimensions (i.e., six planes of atoms each), kept under
constant potentials Ψleft and Ψright such that ΔΨ ¼
Ψright −Ψleft ¼ −ELz, using the same values for E as
above. In both series of simulations, the value of the η
parameter for the Gaussian charges has been set to
0.5052 Å−1 following Ref. [19]. Electroneutrality is
enforced during the charge calculation process [17] (note
that a different constraint on the total charge could also be
used to simulate non-neutral systems [23]).
A first validation is provided by comparing the polari-

zation of the electrodes with the two setups. To do this we
split the single electrode in the CCS setup into two parts.
This is easily made since one side accumulates positive
charge and the other is exactly opposite, while the center is
almost neutral. First, the average accumulated charge Q
on the positive side is compared with the ECS setup on
Fig. 2(a) for a wide range of applied fields (potentials). The
agreement between the two methods is excellent since the
points are almost superimposed. This is true not only for
voltages up to 6 V where the charge increases linearly
with the applied potential (which reflects a constant differ-
ential capacitance [16]), but also up to 20 V for which
the variation is not linear anymore (see the inset). The
probability distributions of the instantaneous values of this
quantity [Fig. 2(b)] are also identical, which shows that the
two methods sample the same configuration space. Finally,
Fig. 2(c) illustrates the instantaneous electrode charges for
a given electrolyte configuration. The two systems are
indistinguishable, showing that even at the local scale the
finite field method yields a correct representation of the
electrode-electrolyte interface.

When a finite field is applied to a bulk liquid, due to the
PBCs the charges cannot accumulate in a specific region so
that there is a net electric field in each point of the supercell.
Here, the presence of a blocking surface (the electrode)
results in the formation of polarized layers on the electro-
lyte side. The polarization arises from two mechanisms:
(i) reorientation of the water molecules; (ii) local charge
imbalance by the accumulation of one ionic species and
depletion of the other. The structure adopted by the liquid
may be compared with the case of constant applied
potential simulations. As shown on Fig. 3, the agreement
is again very good for the variation of the charge density
and its splitting between water and ionic contributions
across the simulation cell. The asymmetry of the double
layer structure at the two interfaces is also very well
reproduced. This validates further the use of the single
electrode in order to study electrochemical interfaces using
3D PBCs. Additional tests on the electric field and Poisson
potential for several applied voltages are provided in the
Supplemental Material [24]; they all show the same level of
accuracy.
In conclusion, we have demonstrated the possibility to

simulate metal slabs with fluctuating surface charge and in
the presence of an explicit electrolyte that counterbalances
the charge. This is done through the combination of two
methods: an applied finite field which polarizes the cell
and a constant potential electrode that screens the field in
its bulk, leading to the formation of two independent
electrochemical interfaces. The net charge on one elec-
trode surface is the opposite of the net charge on the other,
which maintains the overall charge neutrality of the metal
slab. The electrode surface charge fluctuations are com-
pensated by the adsorption of ions from the electrolyte.
The method is validated through extensive comparisons
with simulations using constant applied potential between
two separated electrodes (and 2D PBCs). From the
practical point of view, it is much easier to implement
in classical MD packages since it avoids the introduction
of 2D PBCs. From the computational point of view, the
method is also more efficient: The simulation time is
reduced by approximately 15% (the standard Ewald
summation technique was used in both cases for a fair
comparison but the 3D PBCs simulations could be even
faster by using alternative methods). Last, but not least, it
could much more easily be applied to the case of ab initio
molecular dynamics, which would open the door for the
first-principles simulation of electrochemical reactions
occurring at electrodes, in the presence of an explicit
electrolyte.
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