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Oscillations and Decay of Superfluid Currents in a One-Dimensional Bose Gas on a Ring
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We study the time evolution of a supercurrent imprinted on a one-dimensional ring of interacting bosons
in the presence of a defect created by a localized barrier. Depending on interaction strength and
temperature, we identify various dynamical regimes where the current oscillates, is self-trapped, or decays
with time. We show that the dynamics is captured by a dual Josephson model and involve phase slips of

thermal or quantum nature.
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Superfluidity is a fascinating phenomenon emerging in
interacting quantum systems and governing their low
temperature transport properties. Supercurrents, named in
analogy with superconductivity, are characterized (among
others) by frictionless flow and quantized vortices; and they
are most easily evidenced in ring geometries. Ultracold
atoms confined in ring traps have proven to be a great tool
to study superfluid transport properties [1-3]. Due to their
tunability and their high degree of control, they are an ideal
system for studying the effect of interactions and dimen-
sionality in the superfluid transport dynamics. Because
superconducting quantum interference devices have pro-
vided a wealth of applications, the realization of their
atomic analogs—the atomtronic quantum interference
device (AQUID) [4]—is an important step in the field of
atomtronics [5-9].

From a fundamental point of view, an open question is
the stability of supercurrents. This is related but comple-
mentary to the study of setting the superfluid in rotation,
which is also related to vortex nucleation [10-12]. For a
three-dimensional (3D) ring geometry, the stochastic decay
of the quantized current has been studied, evidencing the
role of the critical velocity [2,13]. In the presence of a
repulsive barrier crossing the ring, resulting in a weak link,
hysteresis in the phase slips’ dynamics has been inves-
tigated [14—18] and the role of thermal activation evidenced
[19]. A scenario for the phase slips’ dynamics induced by a
weak link based on the role of vortices can be used to
explain qualitatively the experimental observations [20],
but it fails to account quantitatively for the thermal
activation [21,22]. Also, in a 3D fermionic double-well
Josephson junction, phase slips play a role in the dynam-
ics [23,24].

In this context, one question naturally arises: if the phase
slips’ dynamics are driven in 3D by vortices crossing
the weak link, what happens in lower dimensions?
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Although, in two-dimensional (2D) systems, vortices
still play a crucial role in the superfluid dynamics
[4,20], they cannot exist in one dimension. Therefore,
the phase slips’ phenomenon should be of a different
nature in 1D.

Previous works have shown the role of phase slips
[25,26] in the decay of 1D transport in the presence of
periodic perturbation [27]. For a microscopic impurity, the
decay rate has been estimated by computing the drag force
[28]. For sufficiently small obstacles, stationary circulating
states may exist [29-31], whereas a forced flow past a
larger obstacle results in soliton emission [32-34]. Most of
the previous studies were performed in a rotating frame,
thus imposing a flow onto the ring, allowing us to estimate
the nucleation rate of the phase slips [35]. For intermediate
to strong interactions and small barriers, it has been shown
that the decay of persistent currents is related to the low-
energy excitations in the ring [36].

In this work, we investigate how a free current flows in
1D: as illustrated in Fig. 1, starting from a system initially
prepared in a well-defined current state in a ring trap with a
barrier, we follow the current dynamics with the aim of
elucidating the dissipation mechanisms. Our study concerns
both zero- and finite-temperature gases: both at weak and
strong interactions. We show that the dynamical behavior
can be interpreted as a dual of the Josephson effect occurring
among angular momentum states. Depending on the barrier
strength and the temperature regime, we observe current
oscillations, self-trapping, or decay. In the weakly interacting
regime, we show that the observed dynamics correspond
to self-trapping among angular momentum states at zero
temperature, and that the decay of the currents at finite
temperature involves dark solitons. For strong interactions,
we show that coherent quantum phase slips dominate the
current dynamics at zero temperature, and incoherent ones
take over at finite temperature.
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FIG. 1. (a) Sketch of the quench protocol: a one-dimensional
(1D) Bose gas on aring in the presence of a localized barrier; e.g.,
a tightly focused repulsive optical potential (red) creating a dip in
the density (blue) is quenched out of equilibrium by phase
imprinting. (b) Energy landscape of the homogeneous 1D Bose
gas on a ring: states with integer values of the current per particle
correspond to local minima of the energy. Quench (black arrow)
transfers the system from the initial zero-current state (light blue
circle) to the state with one unit of current (light red circle).
Depending on the parameters, the barrier can resonantly couple
the +1 and -1 states (light gray arrow) or induce an adiabatic
transition between the +1 and O states (dashed blue arrow).

Model.—We consider N bosons of mass m with repul-
sive contact interactions on a ring of circumference L, with
periodic boundary conditions (i.e., the Lieb-Liniger model)
generalized to include the presence of an external barrier
potential V(x). The Hamiltonian reads

~ L n h2 o2 [/
_ T2 7 It
H—/) dx¥ < 2m8x2+V(x)+2‘P ‘P)‘P, (1)

where W is the bosonic field operator; and n = N/L is the
average density, with a total number of particles of N =
JE dx(‘i”‘i‘). This model describes, e.g., ultracold atoms
confined in a tight ring trap. In this case, g = 2Aw | a, is the
1D interaction strength, @, is the radial confinement
frequency, and a, is the 3D s-wave scattering length.
In the following, we consider either a delta potential
V(x) = ad(x), for which analytical results can be obtained,
or a Gaussian potential V(x) = V, exp [-(x?/26?)], which
is realistic from the experimental point of view. For
homogeneous 1D gases, the equilibrium properties at finite
temperature are captured by two dimensionless parameters
[37]: y = mg/h’n, quantifying the interaction regime from
weak (y <« 1) to strong (y > 1); and the reduced temper-
ature 7 = T /Ty, where T, = h’>n? /2mky is the quantum
degeneracy temperature.

Quench protocol.—Our goal is to study the dynamics of
the particle current in the presence of a barrier. We first
prepare the system in an equilibrium state W, in the
presence of the static barrier potential. This results in a
state with no current. Specific details on the implementa-
tion depend on the interaction regime and are given later.
We then quench the current by phase imprinting a specific
circulation onto the many-body wave function:

cxy) =¥y x 22T

To(xl, ...,XN) g ‘I‘l(xl,

Note that this process can be implemented in experiments
by using specific light potentials according to various
available schemes [2,38]. We then monitor the current
by computing the average of the current operator per
particle:

The time evolution following the quench is described by
different approaches, depending on the interaction and
temperature regimes: (i) at 7 =0 and for a weakly
interacting gas (y < 1), we rely on the Gross-Pitaevskii
(GP) equation numerical solution and on an analytical two-
mode model adapted from [39]; (ii)at 7 > Oand y < 1, we
use the projected Gross-Pitaevskii equation formalism
[40—-42]; and (iii) at y > 1, we use an exact time-dependent
Bose-Fermi mapping describing the infinitely strong inter-
action Tonks-Girardeau (TG) limit for the whole temper-
ature range [43—45], focusing on a quench with circulation
¢ =1 [46].

In the weakly interacting limit, we scale the Gaussian
barrier strength relative to the chemical potential; i.e., we
define Agp = V/p with uy = gn as the chemical potential
of the homogeneous annular gas. Figure 2 illustrates our
simulation results in the weakly interacting regime as a
function of Agp for a relatively narrow barrier of width
o= L/50; yet, it is larger than the healing length
E=n/\/2mgn ~c/4. At zero temperature, we observe
in Fig. 2(a) that the current remains very close to the initial
quenched circulating state for weak to moderate barriers:
up to Agp ~ 1. Above this critical value, we observe a fast
decay of the current, followed by oscillations around the
zero value. This is very similar to what has been obtained in
2D simulations [21]. The new feature of the 1D mean-field
regime is the emergence of current oscillations at large
barriers. As we will discuss here in the following, this
behavior can be interpreted as the transition from self-
trapping to Josephson oscillations of the currents, which is
in analogy to the well-known Josephson effect for particle
imbalance predicted in [39] and experimentally observed
using ultracold atoms confined in a double-well trap [47].
In essence [48], we derive a fully analytical two-mode
model for two current states and show that this accurately
captures the Gross-Pitaevskii dynamics at zero temperature
and very weak interactions [see Fig. 2(c)]. This model
predicts a transition from self-trapping to Josephson oscil-
lations for a critical value AGp that depends on the
interaction strength as in [39]. Interestingly, a two-mode
model based on current states in the linear regime also
accurately describes the dynamics of vortex nucleation in
stirred condensates [57]. Although the two-mode model
breaks down for large barrier or higher (but still weak)
interactions due to the spread of the mean-field wave
function onto many single particle orbitals, we observe

195301-2



PHYSICAL REVIEW LETTERS 123, 195301 (2019)

(a) Agp (€)1 (e) T
1 08 1
=0 c =
= L S 0
= t o
0 e ccccccccccc e e e e == (0] =
= ‘ AAAA. AAAAAAA AAAAAA AAAAAAA = =]
5 WWWW\ - rvwW WYVW NWYWW 105 S o -1
o 6FA'MA'A'AAKA'A7\7« AANAAAAAAAAAARS  © LB
VVVVVVVVVVVVVVVVVVVVVVVVVVV 4 C 5
0 0.05 0.1 0.15 0.2 0.25 ]
Time (T) 2 0
A
EE)J) GP (d) 80 A ﬂ-o 50
E, R R / c L : on
5 I/ /‘ ‘\ // -g 1
S II/, Yo — // 8
(&) s o
P Loz 0 0
0 0.05 0.1 0.15 0.2 0.25 0 0.5 1 1.5 2 0.006 0.008 0.01 0.0120.014
Time (T) Ap Time (1)

FIG. 2. Classical field simulations of the quench dynamics in the mean-field regime for g = 20 x #2/(mL) and N = 1000
(corresponding to y = 0.02). (a) Average current per particle (black solid lines, in units of IT = 72/(Nm)) as a function of time (in units of
7=mL*/h), at T =0. The horizontal black dotted (dashed) lines indicate the values J =0 (&1). From top to bottom,
Agp = {0.8,1,1.05,2}. (b) Current at T = uy/kp, averaged over 100 realizations of the classical field, for barrier strengths
Agp = {0.6,0.9,1.5,2}, where black solid lines indicate simulations and red dashed curves indicate fits from the model function
J(t) = Ae™a" + Bcos [wt + ¢le™"#!. (c) Current for y =2 x 1073 at T = 0 simulations (solid lines) and two-mode model (dashed
lines) for Agp = {0.05,0.1,0.15,0.2} (blue, red, magenta, and black, respectively). (d) Damping rate I' (in units of 1/7) (extracted from
the fit, with a maximum among I'y and I'p) as a function of Agp for T = {0.5, 1, 1.5, 1.75} X po/kg (solid blue, dashed red, solid yellow,
and dashed violet, respectively). (¢) Zoomed-in view of a single classical field trajectory, at T = p/kp and Agp = 0.6, evidencing a
phase slip: a jump in the current (top panel) corresponds to the reflection of a slow soliton at the barrier, which is visible in the density
deviation map [58] (middle panel) and to a singularity in the phase profile (bottom panel).

the same qualitative behavior in the simulations. Indeed,
surprisingly, the current always oscillates regularly at large
barriers [bottom curve of Fig. 2(a)], with a nonsinusoidal
(piecewise linear) shape and a very small damping rate.
These oscillations can be understood by casting the GP
equation into the superfluid hydrodynamic form: transport
of matter occurs via a density fluctuation corresponding to
a shock wave [32], propagating at the speed of sound on top
of a moving fluid.

For a temperature of T = uy/kp, corresponding to the
quasicondensate regime [37], the dynamics of the current
are quite different from the zero-temperature case; see
Fig. 2(b). At low barriers (i.e., Agp < 0.5), we observe an
exponential decay of the current with a decay rate increas-
ing with the barrier strength. For larger barriers, we observe
damped oscillations of the current. In this regime, thermal
phase slips occur deterministically at the position of the
barrier, where the density vanishes. The transition from
exponential to damped oscillation decay is observed for
all our temperatures in the range 0.5 < kgT/py < 2.5.
Figure 2(d) displays the value of the damping rate I" given
by the fit [59] for increasing temperatures, in the range of
0.5 < kgT/ug < 1.75. The damping rate increases with
temperature, displaying a nonmonotonic dependence on
the barrier strength, with a maximum at the crossover
between the two decay regimes. The crossover occurs at
lower barrier strength for larger temperatures, which is
consistent with the thermal activation of solitons, as we will
discuss below.

In order to elucidate the mechanisms for the current
decay, Fig. 2(e) shows a single classical field trajectory,
showing many spontaneous thermal gray solitons [60].
Although most of the solitons present a small density dip,
and hence are fast and are transmitted through the barrier
[61], we notice that the current undergoes discrete jumps
each time a soliton is reflected on the barrier: in this case,
when the soliton reaches zero velocity, the density profile
vanishes, allowing for a phase slip to occur. This corre-
sponds to the adiabatic process indicated by the dashed
blue line on Fig. 1(b). As the temperature increases, the
probability of finding slow solitons increases and the jumps
occur more and more frequently, resulting in an increase of
the decay rate, as seen in Fig. 2(d). Finally, as the barrier
couples the soliton dynamics to the long wavelength sound
excitations [61], we expect this process to be intrinsically
stochastic, thus resulting in an exponential decay of the
average current as observed.

The description of current dynamics as dual of the
Josephson effect persists at strong interactions. In this
regime, the classical picture does not apply; rather, we
show below that the dynamics correspond to quantum
coherent oscillations among angular momentum states
(see [62] for the analog phenomenon in superconductors).
We describe the dynamics of the current in the strongly
interacting limit y > 1 using the exact Tonks-Girardeau
solution, which maps the interacting bosons onto a Fermi
gas. In the TG regime, the relevant dimensionless barrier
strength is Arg = V,,/Ep, with V,, = an being the barrier
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FIG. 3. Exact solutions in the Tonks-Girardeau regime. (a) Average current per particle (in units of IT = #/Nm) vs time (in units of

7= mL? /h) after the quench for N = 23, at T = 0, for barrier strength At = {0.1,0.5, 1,4}. The horizontal black dotted (dashed) lines
indicate the values J = 0 (1). (b) Current at T = E/kg (black solid) for Arg = {0.1,0.5, 1,4} from top to bottom and fits (red dashes,
with same fitting function as in Fig. 2). (c) Frequency w/N, and (d) damping rate I'/ N obtained from the fit vs Ayg for N = 11 (solid
blue) and N = 23 (dashed red). Other curves in Fig. 3(c): frequency for universal Rabi oscillations wg = 7> NA1g (black solid) and first
excitation frequency at the Fermi sphere (black dashed) [48]. (e) Frequency of the excitations produced in the quench (relative amplitude

in color map) vs Arg for N =23 at T = 0.

associated energy and Ey = h’n’zx®/2m being the Fermi
energy, corresponding to the zero-temperature chemical
potential for systems displaying fermionization [48]. At
zero temperature [Fig. 3(a)], we note that, for weak barriers,
At < 1, which is in contrast to the weakly interacting
regime: there is no self-trapping; rather, the current under-
goes Rabi-like oscillations. These oscillations correspond
to coherent quantum phase slips due to backscattering
induced by the barrier, which breaks rotation symmetry,
thus coupling different angular momentum states [6,30,63].
Microscopically, it corresponds to dynamical processes
involving the whole Fermi sphere, i.e., multiple-particle
hole excitations where each particle coherently undergoes
oscillations of angular momentum from L, =Ato L, = —A.
At increasing barrier strength, an envelope appears on top
of the current oscillations, degrading the Rabi oscillations.
This envelope originates from the population of higher-
energy modes, with each transition being characterized by a
different frequency [see Fig. 3(e) and [48] ], leading to a
mode-mode coupling and dephasing, and correspondingly
more complex current oscillations.

At finite temperatures, the quench dynamics of the
current involve high-energy excitations with the amplitude
weighted by the Fermi distribution [48]. The resulting
dynamics correspond to an effective damping of the current
oscillations with an exponential decay [see Fig. 3(b)]
corresponding to the effect of incoherent phase slips.
The revivals observed for the large barrier at zero temper-
ature are highly suppressed due to the thermal excitations.
In Fig. 3(d), we show the decay rate I" of the persistent
currents as a function of the barrier strength [59]. We find
that the decay of persistent currents grows monotonically

with the barrier strength because more and more excitations
are involved in the dynamics as the barrier strength
increases. In Fig. 3(c), we show the oscillation frequency
as a function of Arg and observe that, at increasing barrier
strength, the frequency crosses over from a Rabi-like
regime with @ = 72 Npg to a Josephson-like regime with
@ & \/Arg, which is in agreement with the predictions of
the low-energy Luttinger liquid theory [36]. Quite generally,
although our results have been derived for infinite interaction
strength, the predictions of the TG model, including quan-
tum fluctuations in an exact way, are expected to closely
describe a Bose gas at strong interactions.

In conclusion, we have shown that the dynamical
evolution following a phase imprinting induces oscillations
of the current in a 1D ring, which are associated to a rich
excitation pattern, which can be described by the dual
Josephson dynamics. At weak interactions and a finite
temperature, we observe the formation of both sound waves
and of thermally activated dark solitons. We find that phase
slippage occurs incoherently when the solitons are reflected
by the barrier. In the strongly interacting regime at zero
temperature, we find coherent Rabi oscillations indicating
quantum coherent phase slips, which are degraded by mode
dephasing at large barrier strength or by thermal fluctua-
tions at finite temperature. In the weakly interacting limit,
we find self-trapping of current states, whereas no self-
trapping is found at infinitely strong interactions, where
quantum fluctuations dominate.

The dual Josephson picture is a new paradigm for the
dynamics of atomtronics circuits in which a current state
encodes quantum information. Our work evidences the
importance of the dynamics of the current in a 1D system,
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which can be accurately measured using existing exper-
imental tools: an interferometric measurement accessing
the local currents [64,65] or long wavelength excitations
[66,67]. The stochastic decay of the current in 1D via phase
slips is reminiscent of the stochastic decay due to vortex-
antivortex recombination in 2D or 3D systems [20], where
(however) oscillations are strongly damped by vortex
creation [21]. The main difference between the 1D and
the higher-dimensional counterparts is that, in the former
case, the current dynamics are more robust: at weak
interactions, the soliton properties are gradually degraded
by the several interactions with the barrier, mainly by sound
wave radiation [61]; at strong interactions, we observe the
coherent dynamics of all particles. In the outlook, it would
be very interesting to investigate how the self-trapping
disappears for large but finite interactions, as well as to
study the crossover to a quasi-1D geometry to explore the
role of radial modes in the decay dynamics.
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